纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 166-173.doi: 10.13475/j.fzxb.20201007508
GE Can1,2, ZHANG Chuanxiong3, FANG Jian1,2()
摘要:
为缓解化石能源日益匮乏以及淡水资源短缺等问题,促进纤维材料在水资源利用方面的开发和应用,对以纤维材料为主要原料的界面光热转换水蒸发系统的最新研究进展进行综述。首先介绍了界面光热转换水蒸发技术的主要原理、发展历程和应用领域;然后分别分析了界面光热转换水蒸发系统中的光热转换材料和辅助材料,并以不同的功能作为切入点,详细阐述了纤维材料功能多样化、轻质、低成本和便于加工等特性,展示了其作为界面光热转换水蒸发系统主要原料的优异性能;最后针对在界面光热转换水蒸发系统中使用纤维材料所面临的挑战以及如何提升系统的实用性进行展望,希望能够推动纤维材料在界面光热转换技术中的广泛应用。
中图分类号:
[1] |
ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3):562-578.
doi: 10.1093/nsr/nwz030 |
[2] |
GUO Y, YU G. Engineering hydrogels for efficient solar desalination and water purification[J]. Accounts of Materials Research, 2021, 2(5):374-384.
doi: 10.1021/accountsmr.1c00057 |
[3] |
MU X, GU Y, WANG P, et al. Energy matching for boosting water evaporation in direct solar steam generation[J]. Solar RRL, 2020, 4(10):2000341.
doi: 10.1002/solr.v4.10 |
[4] |
ZHANG Q, YANG H, XIAO X, et al. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam[J]. Journal of Materials Chemistry A, 2019, 7(24):14620-14628.
doi: 10.1039/C9TA03045J |
[5] |
WANG F, HU Z, FAN Y, et al. Salt-rejection solar absorbers based on porous ionic polymers nanowires for desalination[J]. Macromolecular Rapid Communications, 2021, 42(4):2000536.
doi: 10.1002/marc.v42.4 |
[6] |
WANG F, LU N, WANG S, et al. Salt-resistant solar still based on hollow sphere porous ionic polymers for desalination[J]. Microporous and Mesoporous Materials, 2021, 314:110871.
doi: 10.1016/j.micromeso.2020.110871 |
[7] | 章潇慧, 于浩然. 光热转换材料的研究现状与发展趋势[J]. 新材料产业, 2019 (3):56-67. |
ZHANG Xiaohui, YU Haoran. Status and trends of research on photothermal conversion materials[J]. Advanced Materials Industry, 2019 (3):56-67. | |
[8] | 黄金, 冯婷, 高助威, 等. 基于静电纺丝实验法的氧化石墨烯复合无纺布光热转换性能的特性研究[J]. 发光学报, 2020, 41(2):134-139. |
HUANG Jin, FENG Ting, GAO Zhuwei, et al. Characteristics of photothermal conversion performance of graphene oxide composite non-woven fabric based on electrospinning experiment[J]. Chinese Journal of Luminescence, 2020, 41(2):134-139. | |
[9] | 陈宇超, 沙畅畅, 王心妤, 等. 基于光热转换的吸收材料与转换机理研究进展[J]. 能源研究与利用, 2019 (4):23-31,55. |
CHEN Yuchao, SHA Changchang, WANG Xinyu, et al. Research progress on absorption materials and conversion mechanism based on photothermal conver-sion[J]. Energy Research & Utilization, 2019 (4):23-31,55. | |
[10] | 沙畅畅, 陈宇超, 王心妤, 等. 太阳能驱动水蒸发装置中的碳基光吸收材料的研究进展[J]. 石油化工高等学校学报, 2019, 32(5):1-7. |
SHA Changchang, CHEN Yuchao, WANG Xinyu, et al. Research progress of carbon-based solar absorbers for solar driven water evaporation equipment[J]. Journal of Petrochemical Universities, 2019, 32(5):1-7. | |
[11] | 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6):11-19. |
ZHAO Jianling, MA Chenyu, LI Jianqiang, et al. Research progress in photothermal conversion materials based on full spectrum sunlight utilization[J]. Journal of Materials Engineering, 2019, 47(6):11-19. | |
[12] |
TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12):1031-1041.
doi: 10.1038/s41560-018-0260-7 |
[13] |
CHEN M L, WU Y F, SONG W X, et al. Plasmonic nanoparticle-embedded poly (p-phenylene benzobiso-xazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13):6186-6193.
doi: 10.1039/C8NR01017J |
[14] |
CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3):683-718.
doi: 10.1016/j.joule.2018.12.023 |
[15] |
CHEN T, WANG S, WU Z, et al. A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(30):14571-14576.
doi: 10.1039/C8TA04420A |
[16] |
BUNDSCHUH J, KACZMARCZYK M, GHAFFOUR N, et al. State-of-the-art of renewable energy sources used in water desalination: present and future prospects[J]. Desalination, 2021, 508:115035.
doi: 10.1016/j.desal.2021.115035 |
[17] |
QI Q, WANG W, WANG Y, et al. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber memb-rane[J]. Separation and Purification Technology, 2020, 239:116595.
doi: 10.1016/j.seppur.2020.116595 |
[18] |
WILSON H M, TUSHAR, RAHEMAN A R S, et al. Plant-derived carbon nanospheres for high efficiency solar-driven steam generation and seawater desalination at low solar intensities[J]. Solar Energy Materials and Solar Cells, 2020, 210:110489.
doi: 10.1016/j.solmat.2020.110489 |
[19] |
JIANG T, HE J, SUN L, et al. Highly efficient photothermal sterilization of water mediated by prussian blue nanocages[J]. Environmental Science: Nano, 2018, 5(5):1161-1168.
doi: 10.1039/C7EN01245D |
[20] |
NEUMANN O, FERONTI C, NEUMANN A D, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles[J]. Proceedings of the National Academy of Sciences, 2013, 110(29):11677-11681.
doi: 10.1073/pnas.1310131110 |
[21] |
RAVAGHI-ARDEBILI Z, MANENTI F, CORBETTA M, et al. Biomass gasification using low-temperature solar-driven steam supply[J]. Renewable Energy, 2015, 74:671-680.
doi: 10.1016/j.renene.2014.07.021 |
[22] | YANG P, LIU K, CHEN Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9):1923-1927. |
[23] |
LAO J, WU S, GAO J, et al. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump[J]. Nano Energy, 2020, 70:104481.
doi: 10.1016/j.nanoen.2020.104481 |
[24] |
HUANG J, HE Y, HU Y, et al. Coupled photothermal and joule-heating process for stable and efficient interfacial evaporation[J]. Solar Energy Materials and Solar Cells, 2019, 203:110156.
doi: 10.1016/j.solmat.2019.110156 |
[25] | LI H R, HE Y R, HU Y W, et al. Commercially available activated carbon fiber felt enables efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2018, 10(11):9362-9368. |
[26] |
LIN X F, YANG M J, HONG W, et al. Commercial fiber products derived free-standing porous carbonized-membranes for highly efficient solar steam genera-tion[J]. Frontiers in Materials, 2018, 5:8.
doi: 10.3389/fmats.2018.00008 |
[27] | NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6):1510-1519. |
[28] |
EOM W, SHIN H, AMBADE R B, et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communications, 2020, 11(1):7.
doi: 10.1038/s41467-019-13787-x |
[29] |
WU X, GAO T, HAN C, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21):1625-1633.
doi: 10.1016/j.scib.2019.08.022 |
[30] | YANG L, CHEN G L, ZHANG N, et al. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23):19311-19320. |
[31] | GUO X X, GAO H, WANG S Y, et al. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination[J]. Desalination, 2020, 488:9. |
[32] |
WANG F, WEI D Y, LI Y Z, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(31):18311-18317.
doi: 10.1039/C9TA05859A |
[33] | LI W P, CHEN Y Q, YAO L, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation[J]. Desalination, 2020, 478:10. |
[34] |
ZHAO J Q, YANG Y W, YANG C H, et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. Journal of Materials Chemistry A, 2018, 6(33):16196-16204.
doi: 10.1039/C8TA05569F |
[35] |
ZHOU Q, LI H, LI D, et al. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J]. Journal of Colloid and Interface Science, 2021, 592:77-86.
doi: 10.1016/j.jcis.2021.02.045 |
[36] | GAO M, ZHU L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy produc-tion[J]. Energy & Environmental Science, 2019, 12(3):841-864. |
[37] |
HE L, CHAOJI C, GUANG C, et al. High-performance solar steam device with layered channels: artificial tree with a reversed design[J]. Advanced Energy Materials, 2018, 8(8):1701616.
doi: 10.1002/aenm.v8.8 |
[38] |
ZHANG Q, REN L, XIAO X, et al. Vertically aligned Juncus effusus fibril composites for omnidirectional solar evaporation[J]. Carbon, 2020, 156:225-233.
doi: 10.1016/j.carbon.2019.09.067 |
[39] |
ZHANG Q, HU R, CHEN Y, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy, 2020, 276:115545.
doi: 10.1016/j.apenergy.2020.115545 |
[40] |
WU X, ROBSON M E, PHELPS J L, et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019, 56:708-715.
doi: 10.1016/j.nanoen.2018.12.008 |
[41] |
ZHANG Y, XIONG T, NANDAKUMAR D K, et al. Structure architecting for salt-rejecting aolar interfacial desalination to achieve high-performance evaporation with in situ energy generation[J]. Advanced Science, 2020, 7(9):1903478.
doi: 10.1002/advs.v7.9 |
[42] |
LI J, ZHOU X, ZHANG J, et al. Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS Applied Energy Materials, 2020, 3:3024-3032.
doi: 10.1021/acsaem.0c00126 |
[43] | LI Y J, GAO T T, YANG Z, et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J]. Advanced Materials, 2017, 29(26):8. |
[44] |
JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(17):7942-7949.
doi: 10.1039/C8TA00187A |
[45] | GUO A, MING X, FU Y, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials & Interfaces, 2017, 9(35):29958-29964. |
[46] |
HUANG H, ZHAO L, YU Q, et al. Flexible and highly efficient bilayer photothermal paper for water desalination and purification: self-floating, rapid water transport, and localized heat[J]. ACS Applied Materials and Interfaces, 2020, 12(9):11204-11213.
doi: 10.1021/acsami.9b22338 |
[47] | ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38):35005-35014. |
[48] |
XU W, HU X, ZHUANG S, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14):1702884.
doi: 10.1002/aenm.v8.14 |
[49] |
WANG K, HUO B, LIU F, et al. In situ generation of carbonized polyaniline nanowires on thermally-treated and electrochemically-etched carbon fiber cloth for high efficient solar seawater desalination[J]. Desalination, 2020, 481:114303.
doi: 10.1016/j.desal.2019.114303 |
[50] | XU N, HU X Z, XU W C, et al. Mushrooms as eefficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28):5. |
[1] | 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42. |
[2] | 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51. |
[3] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
[4] | 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121. |
[5] | 李凤艳 葛安香 陈勃 . 织物上电子束蒸发沉积镀膜的耐磨及抗紫外线性能[J]. 纺织学报, 2015, 36(04): 87-91. |
[6] | 李俊升;马晓光;张晓林;夏少白;汤铸先. 光热转换型蓄热材料及其蓄热纺织品[J]. 纺织学报, 2007, 28(2): 76-80. |
[7] | 刘建平;高卫东. 服装用天然纤维材料的文化构成[J]. 纺织学报, 2007, 28(1): 99-101. |
[8] | 崔毅华;王新厚. 底网压榨毛毯纤维材料和加工工艺的研讨[J]. 纺织学报, 2004, 25(03): 103-104. |
[9] | 张华. 防严寒纺织品和服装的研究与应用(Ⅰ)[J]. 纺织学报, 2003, 24(05): 111-112. |
[10] | 王厉冰;胡心怡. 大豆蛋白纤维织物湿传递性能研究[J]. 纺织学报, 2003, 24(04): 65-66. |
|