纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 111-118.doi: 10.13475/j.fzxb.20201106008
ZOU Lihua1, YANG Li1, LAN Chuntao2, RUAN Fangtao1, XU Zhenzhen1()
摘要:
为制备高效吸波型电磁屏蔽织物,采用层层组装法在棉织物表面构筑氧化石墨烯/聚吡咯(GO/PPy)功能膜。借助傅里叶红外光谱仪和扫描电子显微镜对GO/PPy涂层织物的结构进行表征,通过万用表和矢量网络分析仪测试织物的导电性能和电磁屏蔽性能。结果表明:织物的阳离子化处理有利于氧化石墨烯和聚吡咯的沉积,适宜的GO质量浓度(0.4 g/L)有利于提升织物的电磁屏蔽效能;随着组装层数的增加,织物的电磁屏蔽性能增加,当组装层数为20时,织物的电磁屏蔽效能达到39.2 dB,可屏蔽99.98%的电磁能;织物对电磁波的吸收率始终大于50%,其主要的屏蔽机制为吸收而非反射。
中图分类号:
[1] |
LACY-HULBERT A, WILKINS R C, HESKETH T R, et al. Cancer risk and electromagnetic fields[J]. Nature, 1995, 375(6526):23.
doi: 10.1038/375023a0 |
[2] | 段永洁, 谢春萍, 刘新金. 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016, 37(9):31-36. |
DUAN Yongjie, XIE Chunping, LIU Xinjin. Electromagnetic shielding and wrinkle recovery property of cotton/stainless steel filament woven fabric[J]. Journal of Textile Research, 2016, 37(9):31-36. | |
[3] | 曲华洋, 谢春萍, 徐伯俊, 等. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018, 39(6):52-57,63. |
QU Huayang, XIE Chunping, XU Bojun, et al. Preparation of elastic radiation resistant textile based on double filament core-spun yarn[J]. Journal of Textile Research, 2018, 39(6):52-57,63. | |
[4] | 师艳丽, 李娜娜, 付元静, 等. 用于纺织品表面改性的磁控溅射技术研究进展[J]. 纺织学报, 2016, 37(4):165-169. |
SHI Yanli, LI Nana, FU Yuanjing, et al. Research progress of magnetron sputtering in textiles[J]. Journal of Textile Research, 2016, 37(4):165-169. | |
[5] | 孟灵灵, 魏取福, 严忠杰, 等. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(3):143-148. |
MENG Lingling, WEI Qufu, YAN Zhongjie, et al. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering[J]. Journal of Textile Research, 2021, 42(3):143-148. | |
[6] |
GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019, 26(4):2833-2847.
doi: 10.1007/s10570-019-02284-5 |
[7] | LAN C, GUO M, LI C, et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(6):7477-7485. |
[8] |
WANG Y, WANG W, XU R, et al. Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 360:817-828.
doi: 10.1016/j.cej.2018.12.045 |
[9] |
LAN C, LI C, HU J, et al. High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assisted "excess assembly" for electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2018, 5(13):1800116.
doi: 10.1002/admi.v5.13 |
[10] |
GAHLOUT P, CHOUDHARY V. Microwave shielding behaviour of polypyrrole impregnated fabrics[J]. Composites Part B: Engineering, 2019, 175:107093.
doi: 10.1016/j.compositesb.2019.107093 |
[11] | 缪润伍, 金丽华, 魏祺煜, 等. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(2):100-104. |
MIAO Runwu, JIN Lihua, WEI Qiyu, et al. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials[J]. Journal of Textile Research, 2019, 40(2):100-104. | |
[12] |
DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237.
doi: 10.1126/science.277.5330.1232 |
[13] | ZHANG X, CHEN H, ZHANG H. Layer-by-layer assembly: from conventional to unconventional methods[J]. Chemical Communications, 2007(14):1395-1405. |
[14] | 邹梨花, 徐珍珍, 孙妍妍, 等. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(8):109-116. |
ZOU Lihua, XU Zhenzhen, SUN Yanyan, et al. Effect of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics[J]. Journal of Textile Research, 2019, 40(8):109-116. | |
[15] |
ZHANG L L, ZHAO S, TIAN X N, et al. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes[J]. Langmuir, 2010, 26(22):17624-17628.
doi: 10.1021/la103413s |
[16] |
LI D, MUELLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):101-105.
doi: 10.1038/nnano.2007.451 |
[17] |
SAINI P, CHOUDHARY V. Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2-12.4 GHz range[J]. Journal of Applied Polymer Science, 2013, 129(5):2832-2839.
doi: 10.1002/app.38994 |
[18] |
DALLAS P, NIARCHOS D, VRBANIC D, et al. Interfacial polymerization of pyrrole and in situ synjournal of polypyrrole/silver nanocomposites[J]. Polymer, 2007, 48(7):2007-2013.
doi: 10.1016/j.polymer.2007.01.058 |
[19] |
BISSESSUR R, LIU P K Y, SCULLY S F. Intercalation of polypyrrole into graphite oxide[J]. Synthetic Metals, 2006, 156(16/17):1023-1027.
doi: 10.1016/j.synthmet.2006.06.024 |
[20] |
ZHU C, ZHAI J, WEN D, et al. Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage[J]. Journal of Materials Chemistry, 2012, 22(13):6300-6306.
doi: 10.1039/c2jm16699b |
[21] |
HAJI A, RAHBAR R S, SHOUSHTARI A M. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology[J]. Applied Surface Science, 2014, 311:593-601.
doi: 10.1016/j.apsusc.2014.05.113 |
[22] |
BONALDI R R, SIORES E, SHAH T. Characterization of electromagnetic shielding fabrics obtained from carbon nanotube composite coatings[J]. Synthetic Metals, 2014, 187:1-8.
doi: 10.1016/j.synthmet.2013.10.003 |
[23] |
CHEN M, ZHANG L, DUAN S, et al. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances[J]. Nanoscale, 2014, 6(7):3796-3803.
doi: 10.1039/C3NR06092F |
[24] |
ABBASI H, ANTUNES M, VELASCO J I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding[J]. Progress in Materials Science, 2019, 103:319-373.
doi: 10.1016/j.pmatsci.2019.02.003 |
[25] |
SONG W L, CAO M S, LU M M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon, 2014, 66:67-76.
doi: 10.1016/j.carbon.2013.08.043 |
[26] |
YOUSEFI N, SUN X, LIN X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2014, 26(31):5480-5487.
doi: 10.1002/adma.201305293 |
[1] | 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3 C2 Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177. |
[2] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[3] | 鲜永芳, 王红梅, 吴明华, 王莉莉. 少/无氨氮助剂在活性染料深色印花中的应用[J]. 纺织学报, 2021, 42(11): 89-96. |
[4] | 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114. |
[5] | 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119. |
[6] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[7] | 程佩, 傅佳佳, 王蕾, 张建祥, 张凯, 高卫东. 预处理对棉织物免烫整理效果的影响[J]. 纺织学报, 2021, 42(09): 126-130. |
[8] | 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103. |
[9] | 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114. |
[10] | 郭恒, 黄宏博, 姚金波, 姜会钰, 夏治刚, 王运利. 家庭洗涤对免烫棉织物性能的影响[J]. 纺织学报, 2021, 42(07): 129-136. |
[11] | 陈小文, 吴伟, 钟毅, 徐红, 毛志平. 棉织物的活性染料低含水率焙蒸固色工艺[J]. 纺织学报, 2021, 42(07): 115-122. |
[12] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119. |
[13] | 张华, 张杰, 高燕. 液氨处理对锦纶/棉混纺织物性能的影响[J]. 纺织学报, 2021, 42(06): 128-132. |
[14] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[15] | 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114. |
|