纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 111-118.doi: 10.13475/j.fzxb.20201106008

• 染整与化学品 • 上一篇    下一篇

层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能

邹梨花1, 杨莉1, 兰春桃2, 阮芳涛1, 徐珍珍1()   

  1. 1.安徽工程大学 安徽省纺织结构复合材料国际联合研究中心, 安徽 芜湖 241000
    2.江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2020-11-30 修回日期:2021-05-21 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 徐珍珍
  • 作者简介:邹梨花(1987—),女,讲师,博士。主要研究方向为纺织品的功能整理。
  • 基金资助:
    国家自然科学基金项目(51903001);安徽省纺织结构复合材料国际联合研究中心开放基金项目(2021ACTC07);安徽省对外科技合作项目(1804b06020360);安徽工程大学科研项目(Xjky2020041)

Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method

ZOU Lihua1, YANG Li1, LAN Chuntao2, RUAN Fangtao1, XU Zhenzhen1()   

  1. 1. Anhui Province International Cooperation Research Center of Textile Structure Composite Materials,Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. School of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-11-30 Revised:2021-05-21 Published:2021-12-15 Online:2021-12-29
  • Contact: XU Zhenzhen

摘要:

为制备高效吸波型电磁屏蔽织物,采用层层组装法在棉织物表面构筑氧化石墨烯/聚吡咯(GO/PPy)功能膜。借助傅里叶红外光谱仪和扫描电子显微镜对GO/PPy涂层织物的结构进行表征,通过万用表和矢量网络分析仪测试织物的导电性能和电磁屏蔽性能。结果表明:织物的阳离子化处理有利于氧化石墨烯和聚吡咯的沉积,适宜的GO质量浓度(0.4 g/L)有利于提升织物的电磁屏蔽效能;随着组装层数的增加,织物的电磁屏蔽性能增加,当组装层数为20时,织物的电磁屏蔽效能达到39.2 dB,可屏蔽99.98%的电磁能;织物对电磁波的吸收率始终大于50%,其主要的屏蔽机制为吸收而非反射。

关键词: 层层组装法, 氧化石墨烯, 聚吡咯, 导电网络, 电磁屏蔽织物, 组装层数, 阳离子化处理, 棉织物

Abstract:

To study the influence of deposition of graphene oxide (GO)/polypyrrole (PPy) and their concentrations on electromagnetic shielding property of coated fabric, and obtain highly efficient wave-absorbing electromagnetic shielding properties, GO/PPy functional film was constructed on a cotton fabric using layer-by-layer assembling method.The GO/PPy coated fabric structure was characterized by Fourier infrared spectrometer and scanning electron microscope, and the electrical conductivity and electromagnetic shielding properties of the fabric were tested by multimeter and vector network analyzer.The results show that the cationic treatment of the fabric is beneficial for the deposition of GO and PPy. It was found that optimal GO concentration (0.4 g/L) is beneficial to improve the electromagnetic shielding effectiveness of the fabric, and that with the increase of the number of assembled layers, the electromagnetic shielding efficiency of the coated fabric increases. In particular, when the number of assembled layers was 20, the electromagnetic shielding efficiency of the fabric reached 39.2 dB, which can shield 99.98% of the electromagnetic energy. The absorptivity of electromagnetic wave is always more than 50%. The main shielding mechanism is absorption, followed by reflection.

Key words: layer-by-layer assembly method, graphene oxide, polypyrrole, conductive mesh, electromagnetic shielding fabric, assembled layer, cationic treatment, cotton fabric

中图分类号: 

  • TS101.8

图1

棉织物、氧化石墨烯粉末、聚吡咯粉末及(GO/PPy)*4涂层棉织物的红外光谱图"

图2

未整理棉织物与未经阳离子化直接组装及经过阳离子化再组装(GO/PPy)*2功能膜棉织物的电磁屏蔽效能曲线"

图3

未组装与组装2层GO/PPy功能膜的棉织物表面形貌(×5 000)"

图4

不同质量浓度GO时(GO/PPy)*m功能膜在棉织物上单位面积质量增加量曲线"

图5

棉织物屏蔽效能与GO质量浓度、组装层数的关系"

图6

棉织物质量增加率与GO质量浓度及组装层数的关系"

图7

不同GO质量浓度时(GO/PPy)*4功能膜涂层棉织物的SEM照片(×1 000)"

图8

不同GO质量浓度与不同GO/PPy组装层数涂层棉织物的电导率"

图9

GO/PPy功能膜涂层棉织物SET、SEA和SER与组装层数的关系"

图10

吸收率、反射率和透射率与组装层数的关系"

图11

不同层数 GO/PPy功能膜涂层棉纤维的SEM照片(×5 000)"

[1] LACY-HULBERT A, WILKINS R C, HESKETH T R, et al. Cancer risk and electromagnetic fields[J]. Nature, 1995, 375(6526):23.
doi: 10.1038/375023a0
[2] 段永洁, 谢春萍, 刘新金. 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016, 37(9):31-36.
DUAN Yongjie, XIE Chunping, LIU Xinjin. Electromagnetic shielding and wrinkle recovery property of cotton/stainless steel filament woven fabric[J]. Journal of Textile Research, 2016, 37(9):31-36.
[3] 曲华洋, 谢春萍, 徐伯俊, 等. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018, 39(6):52-57,63.
QU Huayang, XIE Chunping, XU Bojun, et al. Preparation of elastic radiation resistant textile based on double filament core-spun yarn[J]. Journal of Textile Research, 2018, 39(6):52-57,63.
[4] 师艳丽, 李娜娜, 付元静, 等. 用于纺织品表面改性的磁控溅射技术研究进展[J]. 纺织学报, 2016, 37(4):165-169.
SHI Yanli, LI Nana, FU Yuanjing, et al. Research progress of magnetron sputtering in textiles[J]. Journal of Textile Research, 2016, 37(4):165-169.
[5] 孟灵灵, 魏取福, 严忠杰, 等. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(3):143-148.
MENG Lingling, WEI Qufu, YAN Zhongjie, et al. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering[J]. Journal of Textile Research, 2021, 42(3):143-148.
[6] GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019, 26(4):2833-2847.
doi: 10.1007/s10570-019-02284-5
[7] LAN C, GUO M, LI C, et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(6):7477-7485.
[8] WANG Y, WANG W, XU R, et al. Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 360:817-828.
doi: 10.1016/j.cej.2018.12.045
[9] LAN C, LI C, HU J, et al. High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assisted "excess assembly" for electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2018, 5(13):1800116.
doi: 10.1002/admi.v5.13
[10] GAHLOUT P, CHOUDHARY V. Microwave shielding behaviour of polypyrrole impregnated fabrics[J]. Composites Part B: Engineering, 2019, 175:107093.
doi: 10.1016/j.compositesb.2019.107093
[11] 缪润伍, 金丽华, 魏祺煜, 等. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(2):100-104.
MIAO Runwu, JIN Lihua, WEI Qiyu, et al. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials[J]. Journal of Textile Research, 2019, 40(2):100-104.
[12] DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237.
doi: 10.1126/science.277.5330.1232
[13] ZHANG X, CHEN H, ZHANG H. Layer-by-layer assembly: from conventional to unconventional methods[J]. Chemical Communications, 2007(14):1395-1405.
[14] 邹梨花, 徐珍珍, 孙妍妍, 等. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(8):109-116.
ZOU Lihua, XU Zhenzhen, SUN Yanyan, et al. Effect of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics[J]. Journal of Textile Research, 2019, 40(8):109-116.
[15] ZHANG L L, ZHAO S, TIAN X N, et al. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes[J]. Langmuir, 2010, 26(22):17624-17628.
doi: 10.1021/la103413s
[16] LI D, MUELLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):101-105.
doi: 10.1038/nnano.2007.451
[17] SAINI P, CHOUDHARY V. Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2-12.4 GHz range[J]. Journal of Applied Polymer Science, 2013, 129(5):2832-2839.
doi: 10.1002/app.38994
[18] DALLAS P, NIARCHOS D, VRBANIC D, et al. Interfacial polymerization of pyrrole and in situ synjournal of polypyrrole/silver nanocomposites[J]. Polymer, 2007, 48(7):2007-2013.
doi: 10.1016/j.polymer.2007.01.058
[19] BISSESSUR R, LIU P K Y, SCULLY S F. Intercalation of polypyrrole into graphite oxide[J]. Synthetic Metals, 2006, 156(16/17):1023-1027.
doi: 10.1016/j.synthmet.2006.06.024
[20] ZHU C, ZHAI J, WEN D, et al. Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage[J]. Journal of Materials Chemistry, 2012, 22(13):6300-6306.
doi: 10.1039/c2jm16699b
[21] HAJI A, RAHBAR R S, SHOUSHTARI A M. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology[J]. Applied Surface Science, 2014, 311:593-601.
doi: 10.1016/j.apsusc.2014.05.113
[22] BONALDI R R, SIORES E, SHAH T. Characterization of electromagnetic shielding fabrics obtained from carbon nanotube composite coatings[J]. Synthetic Metals, 2014, 187:1-8.
doi: 10.1016/j.synthmet.2013.10.003
[23] CHEN M, ZHANG L, DUAN S, et al. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances[J]. Nanoscale, 2014, 6(7):3796-3803.
doi: 10.1039/C3NR06092F
[24] ABBASI H, ANTUNES M, VELASCO J I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding[J]. Progress in Materials Science, 2019, 103:319-373.
doi: 10.1016/j.pmatsci.2019.02.003
[25] SONG W L, CAO M S, LU M M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon, 2014, 66:67-76.
doi: 10.1016/j.carbon.2013.08.043
[26] YOUSEFI N, SUN X, LIN X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2014, 26(31):5480-5487.
doi: 10.1002/adma.201305293
[1] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3 C2 Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[2] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[3] 鲜永芳, 王红梅, 吴明华, 王莉莉. 少/无氨氮助剂在活性染料深色印花中的应用[J]. 纺织学报, 2021, 42(11): 89-96.
[4] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[5] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[6] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[7] 程佩, 傅佳佳, 王蕾, 张建祥, 张凯, 高卫东. 预处理对棉织物免烫整理效果的影响[J]. 纺织学报, 2021, 42(09): 126-130.
[8] 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103.
[9] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[10] 郭恒, 黄宏博, 姚金波, 姜会钰, 夏治刚, 王运利. 家庭洗涤对免烫棉织物性能的影响[J]. 纺织学报, 2021, 42(07): 129-136.
[11] 陈小文, 吴伟, 钟毅, 徐红, 毛志平. 棉织物的活性染料低含水率焙蒸固色工艺[J]. 纺织学报, 2021, 42(07): 115-122.
[12] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[13] 张华, 张杰, 高燕. 液氨处理对锦纶/棉混纺织物性能的影响[J]. 纺织学报, 2021, 42(06): 128-132.
[14] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[15] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .