纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 28-33.doi: 10.13475/j.fzxb.20210203306
WANG Shudong1,2,3(), DONG Qing2,4, WANG Ke1, MA Qian1
摘要:
针对静电纺聚乳酸(PLA)纳米纤维膜力学强度不高的问题,将一定质量的还原氧化石墨烯(rGO)分散于PLA和二甲基甲酰胺(DMF)纺丝溶液中,通过静电纺丝法制备PLA/rGO复合纳米纤维膜。对纺丝液的流变性能以及复合纳米纤维膜的形貌结构、微观结构和力学性能进行分析,采用四唑盐比色法对复合纳米纤维膜的细胞相容性进行表征。结果表明:rGO成功地复合至PLA纳米纤维中,且以不规则球状形式分布于PLA纳米纤维膜中;rGO的复合显著提升了PLA纳米纤维膜的力学强度,当rGO质量分数为0.6%时,复合纳米纤维膜的断裂强度达2.02 MPa,是纯PLA纳米纤维膜2.3倍;培养1、3和7 d后,小鼠胚胎成骨细胞可在复合纳米纤维膜上生长和增殖,表明PLA/rGO复合纳米纤维膜具有较好的细胞相容性。
中图分类号:
[1] |
MACNEIL S. Progress and opportunities for tissue-engineered skin[J]. Nature, 2007, 445:874-880.
doi: 10.1038/nature05664 |
[2] |
WU T, DING M, SHI C, et al. Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering[J]. Chinese Chemical Letters, 2020, 31(3):617-625.
doi: 10.1016/j.cclet.2019.07.033 |
[3] |
QIAO Y, LI Q, JALALI A, et al. In-situ microfibrillated poly(epsilon-caprolactone)/poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability[J]. Composite Part B: Engineering, 2021, 208:108594.
doi: 10.1016/j.compositesb.2020.108594 |
[4] |
DONG X, LIU L, WANG Y, et al. The compatibilization of poly (propylene carbonate)/poly (lactic acid) blends in presence of core-shell starch nanoparticles[J]. Carbohydrate Polymers, 2021, 254:117321.
doi: 10.1016/j.carbpol.2020.117321 |
[5] | LI J, YE W, FAN Z, et al. A novel stereocomplex poly(lactic acid) with shish-kebab crystals and bionic surface structures as bioimplant materials for tissue engineering applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4):5469-5477. |
[6] |
SBARDELLA F, MARTINELLI A, DI LISIO V, et al. Surface modification of basalt fibres with ZnO nanorods and its effect on thermal and mechanical properties of PLA-based composites[J]. Biomolecules, 2021, 11(2):200.
doi: 10.3390/biom11020200 |
[7] | 王曙东, 张幼珠, 王红卫, 等. 静电纺PLA/丝素-明胶复合管状支架的结构与性能[J]. 纺织学报, 2009, 30(6):6-9. |
WANG Shudong, ZHANG Youzhu, WANG Hongwei, et al. Study on the electrospun polylactide/silk fibroin-gelatin tubular scaffold for tissue engineering blood vessel[J]. Journal of Textile Research, 2009, 30(6):6-9. | |
[8] |
XU L B, CHEN G F, WANG W, et al. A facile assembly of polyimide/graphene core-shell structured nanocomposites with both high electrical and thermal conductivities[J]. Composite Part A: Applied Science and Manufacturing, 2016, 84:472-481.
doi: 10.1016/j.compositesa.2016.02.027 |
[9] |
SHAO W, WANG S X, LIU H, et al. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances[J]. Carbohydrate Polymers, 2016, 138:166-171.
doi: 10.1016/j.carbpol.2015.11.033 |
[10] |
GAO M, WANG L, ZHAO B, et al. Sandwich construction of chitosan/reduced graphene oxide composite as additive-free electrode material for high-performance supercapacitors[J]. Carbohydrate Polymers, 2021, 255:117397.
doi: 10.1016/j.carbpol.2020.117397 |
[11] |
MAO W, DING Y, LI M, et al. Synjournal and electrochemical characterization of 2D SnS2/RGO as anode material in sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 855:157209.
doi: 10.1016/j.jallcom.2020.157209 |
[12] |
SHENDE P, PATHAN N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications[J]. Carbohydrate Polymers, 2021, 255:117385.
doi: 10.1016/j.carbpol.2020.117385 |
[13] |
MALLICK M, ARUNACHALAM N. Electrophoretic deposited graphene based functional coatings for biocompatibility improvement of nitinol[J]. Thin Solid Films, 2019, 692:137616.
doi: 10.1016/j.tsf.2019.137616 |
[14] |
BERGER C, SONG Z, LI X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312:1191-1196.
doi: 10.1126/science.1125925 |
[15] |
VAZQUEZ A L, CALLEJA F, BORCA B, et al. Periodically rippled graphene: growth and spatially resolved electronic structure[J]. Physical Review Letters, 2008, 100:056807.
doi: 10.1103/PhysRevLett.100.056807 |
[16] | 王曙东. 蚕丝氧化石墨烯复合功能材料的制备及性能研究[D]. 苏州:苏州大学, 2016: 108. |
WANG Shudong. Preparation and properties of the silk/graphene oxide blended functional materials[D]. Suzhou: Soochow University, 2016: 108. | |
[17] |
WANG S D, ZHANG Y Z, WANG H W, et al. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nano-fibers[J]. International Journal of Biological Macromolecules, 2011, 48:345-353.
doi: 10.1016/j.ijbiomac.2010.12.008 |
[18] |
RAHMATI M, MILLS D K, URBANSKA A M, et al. Electrospinning for tissue engineering applications[J]. Progress in Materials Science, 2021, 117:100721.
doi: 10.1016/j.pmatsci.2020.100721 |
[19] | 董文, 包敏, 李碧云, 等. 含石墨烯的聚乳酸复合纳米纤维的制备及细胞相容性[J]. 功能高分子学报, 2014, 27(2):147-156. |
DONG Wen, BAO Min, LI Biyun, et al. Preparation and cytocompatibility evaluation of PLLA-graphene composite nanofibers[J]. Journal of Functional Polymers, 2014, 27(2):147-156. | |
[20] |
CARVALHO A P A, JUNIOR C A C. Green strategies for active food packagings: a systematic review on active properties of graphene-based nanomaterials and biodegradable polymers[J]. Trends in Food Science and Technology, 2020, 103:130-143.
doi: 10.1016/j.tifs.2020.07.012 |
[21] |
HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339.
doi: 10.1021/ja01539a017 |
[22] |
WANG S D, ZHANG K Q. Electrogelation and rapid prototyping of Bombyx mori silk fibroin[J]. Materials Letters, 2016, 169:5-9.
doi: 10.1016/j.matlet.2016.01.079 |
[23] |
WANG K, MA Q, ZHANG Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage[J]. Cellulose, 2020, 27:1845-1852.
doi: 10.1007/s10570-019-02869-0 |
[24] |
WANG S D, MA Q, WANG K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibrous scaffolds modified by graphene oxide[J]. ACS Omega, 2018, 3:406-413.
doi: 10.1021/acsomega.7b01210 |
[25] |
KUDIN K N, OZBAS B, SCHNIEPP H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8:36-41.
doi: 10.1021/nl071822y |
[26] |
KU S H, LEE M, PARK C B. Carbon-based nanomaterials for tissue engineering[J]. Advanced Healthcare Materials, 2013, 2(2):244-260.
doi: 10.1002/adhm.v2.2 |
[1] | 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42. |
[2] | 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41. |
[3] | 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186. |
[4] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[5] | 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30. |
[6] | 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45. |
[7] | 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51. |
[8] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[9] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[10] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[11] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[12] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[13] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[14] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[15] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
|