纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 28-33.doi: 10.13475/j.fzxb.20210203306

• 纤维材料 • 上一篇    下一篇

还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能

王曙东1,2,3(), 董青2,4, 王可1, 马倩1   

  1. 1.盐城工业职业技术学院 纺织服装学院, 江苏 盐城 224005
    2.苏州大学 纺织与服装工程学院,江苏 苏州 215002
    3.江苏金麦穗新能源科技股份有限公司, 江苏 盐城 224013
    4.苏州工业园区海归人才子女学校, 江苏 苏州 215021
  • 收稿日期:2021-02-15 修回日期:2021-09-15 出版日期:2021-12-15 发布日期:2021-12-29
  • 作者简介:王曙东(1983—),男,副教授,博士。主要研究方向为生物医用纤维材料。E-mail: sdwang1983@163.com
  • 基金资助:
    江苏省自然科学基金面上项目(BK20201216);江苏高校青蓝工程培养对象(2018 NO.12);江苏高校青蓝工程培养对象(2019 NO.3);江苏高校自然科学基金面上项目(18KJB540005);江苏高校自然科学基金面上项目(19KJD54000);国家留学基金委资助项目(201908370222)

Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide

WANG Shudong1,2,3(), DONG Qing2,4, WANG Ke1, MA Qian1   

  1. 1. School of Textile and Clothing, Yancheng Polytechnic College, Yancheng, Jiangsu 224005, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215002, China
    3. Jiangsu Jinmaisui New Energy Technology Co., Ltd., Yancheng, Jiangsu 224013, China
    4. Overseas Chinese Academy of Chiway Suzhou, Suzhou, Jiangsu 215021, China
  • Received:2021-02-15 Revised:2021-09-15 Published:2021-12-15 Online:2021-12-29

摘要:

针对静电纺聚乳酸(PLA)纳米纤维膜力学强度不高的问题,将一定质量的还原氧化石墨烯(rGO)分散于PLA和二甲基甲酰胺(DMF)纺丝溶液中,通过静电纺丝法制备PLA/rGO复合纳米纤维膜。对纺丝液的流变性能以及复合纳米纤维膜的形貌结构、微观结构和力学性能进行分析,采用四唑盐比色法对复合纳米纤维膜的细胞相容性进行表征。结果表明:rGO成功地复合至PLA纳米纤维中,且以不规则球状形式分布于PLA纳米纤维膜中;rGO的复合显著提升了PLA纳米纤维膜的力学强度,当rGO质量分数为0.6%时,复合纳米纤维膜的断裂强度达2.02 MPa,是纯PLA纳米纤维膜2.3倍;培养1、3和7 d后,小鼠胚胎成骨细胞可在复合纳米纤维膜上生长和增殖,表明PLA/rGO复合纳米纤维膜具有较好的细胞相容性。

关键词: 静电纺丝, 聚乳酸纳米纤维膜, 还原氧化石墨烯, 细胞相容性

Abstract:

To address the low mechanical strength of the electrospinning polylactic acid (PLA) nanofibrous membrane, reduced graphene oxide (rGO) was dispersed into the spinning solution of PLA and dimethylformamide to fabricate PLA/rGO composite nanofibrous membrane by electrospinning. The rheological properties of the spinning solution, structure and mechanical properties of the composite nanofibrous membrane were characterized and analyzed, and the cytocompatibility of the composite nanofibrous membrane was studied by tetrazolium salt colorimetry evaluation. The results show that rGO is successfully blended into the PLA nanofibers by electrospinning, and rGO is distributed in PLA nanofibrous membrane in an irregular spherical form. The mechanical strength of PLA nanofibrous membrane is significantly improved with the blending of rGO. When the mass fraction of rGO was 0.6%, the breaking strength of the composite nanofibrous membrane reached 2.02 MPa, which is 2.3 times higher than that of the pure PLA nanofibrous membrane. After 1, 3 and 7 d culturing, the mouse embryonic osteoblasts displayed growth and proliferation on the composite nanofibrous membrane, which indicates that the PLA/rGO composite nanofibrous membrane offers good cytocompatibility.

Key words: electrospinning, polylactic acid nanofibrous membrane, reduced graphene oxide, cytocompatibility

中图分类号: 

  • TS102.512

图1

静电纺PLA/rGO复合纳米纤维膜的制备示意图"

图2

PLA/rGO复合纺丝溶液的外观形貌和流变性能"

图3

不同rGO质量分数的PLA/rGO 复合纳米纤维膜的SEM照片(×5 000)"

图4

rGO及PLA/rGO复合纳米纤维膜的透射电镜照片"

图5

不同rGO质量分数的PLA/rGO 复合纳米纤维膜的拉曼光谱图"

图6

PLA/rGO复合纳米纤维的力学性能"

表1

PLA/rGO复合纳米纤维的力学性能"

样品
编号
断裂
强度/MPa
断裂伸
长率/%
弹性模
量/MPa
1# 0.88±0.12 57.53±4.28 1.52±0.21
2# 1.01±0.19 55.48±3.61 1.84±0.34
3# 1.43±0.08 48.84±2.85 2.92±0.16
4# 2.02±0.21 41.39±3.32 4.93±0.51

表2

小鼠胚胎成骨细胞在PLA及PLA/rGO复合纳米纤维膜上的增殖情况"

培养时
间/d
支架的吸光度值
1# 2# 3# 4#
1 0.091 0.101 0.097 0.115
3 0.136 0.143 0.139 0.225
7 0.197 0.213 0.242 0.304

图7

PLA及PLA/rGO复合纳米纤维膜的表面碳、氧元素分布情况"

[1] MACNEIL S. Progress and opportunities for tissue-engineered skin[J]. Nature, 2007, 445:874-880.
doi: 10.1038/nature05664
[2] WU T, DING M, SHI C, et al. Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering[J]. Chinese Chemical Letters, 2020, 31(3):617-625.
doi: 10.1016/j.cclet.2019.07.033
[3] QIAO Y, LI Q, JALALI A, et al. In-situ microfibrillated poly(epsilon-caprolactone)/poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability[J]. Composite Part B: Engineering, 2021, 208:108594.
doi: 10.1016/j.compositesb.2020.108594
[4] DONG X, LIU L, WANG Y, et al. The compatibilization of poly (propylene carbonate)/poly (lactic acid) blends in presence of core-shell starch nanoparticles[J]. Carbohydrate Polymers, 2021, 254:117321.
doi: 10.1016/j.carbpol.2020.117321
[5] LI J, YE W, FAN Z, et al. A novel stereocomplex poly(lactic acid) with shish-kebab crystals and bionic surface structures as bioimplant materials for tissue engineering applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4):5469-5477.
[6] SBARDELLA F, MARTINELLI A, DI LISIO V, et al. Surface modification of basalt fibres with ZnO nanorods and its effect on thermal and mechanical properties of PLA-based composites[J]. Biomolecules, 2021, 11(2):200.
doi: 10.3390/biom11020200
[7] 王曙东, 张幼珠, 王红卫, 等. 静电纺PLA/丝素-明胶复合管状支架的结构与性能[J]. 纺织学报, 2009, 30(6):6-9.
WANG Shudong, ZHANG Youzhu, WANG Hongwei, et al. Study on the electrospun polylactide/silk fibroin-gelatin tubular scaffold for tissue engineering blood vessel[J]. Journal of Textile Research, 2009, 30(6):6-9.
[8] XU L B, CHEN G F, WANG W, et al. A facile assembly of polyimide/graphene core-shell structured nanocomposites with both high electrical and thermal conductivities[J]. Composite Part A: Applied Science and Manufacturing, 2016, 84:472-481.
doi: 10.1016/j.compositesa.2016.02.027
[9] SHAO W, WANG S X, LIU H, et al. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances[J]. Carbohydrate Polymers, 2016, 138:166-171.
doi: 10.1016/j.carbpol.2015.11.033
[10] GAO M, WANG L, ZHAO B, et al. Sandwich construction of chitosan/reduced graphene oxide composite as additive-free electrode material for high-performance supercapacitors[J]. Carbohydrate Polymers, 2021, 255:117397.
doi: 10.1016/j.carbpol.2020.117397
[11] MAO W, DING Y, LI M, et al. Synjournal and electrochemical characterization of 2D SnS2/RGO as anode material in sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 855:157209.
doi: 10.1016/j.jallcom.2020.157209
[12] SHENDE P, PATHAN N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications[J]. Carbohydrate Polymers, 2021, 255:117385.
doi: 10.1016/j.carbpol.2020.117385
[13] MALLICK M, ARUNACHALAM N. Electrophoretic deposited graphene based functional coatings for biocompatibility improvement of nitinol[J]. Thin Solid Films, 2019, 692:137616.
doi: 10.1016/j.tsf.2019.137616
[14] BERGER C, SONG Z, LI X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312:1191-1196.
doi: 10.1126/science.1125925
[15] VAZQUEZ A L, CALLEJA F, BORCA B, et al. Periodically rippled graphene: growth and spatially resolved electronic structure[J]. Physical Review Letters, 2008, 100:056807.
doi: 10.1103/PhysRevLett.100.056807
[16] 王曙东. 蚕丝氧化石墨烯复合功能材料的制备及性能研究[D]. 苏州:苏州大学, 2016: 108.
WANG Shudong. Preparation and properties of the silk/graphene oxide blended functional materials[D]. Suzhou: Soochow University, 2016: 108.
[17] WANG S D, ZHANG Y Z, WANG H W, et al. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nano-fibers[J]. International Journal of Biological Macromolecules, 2011, 48:345-353.
doi: 10.1016/j.ijbiomac.2010.12.008
[18] RAHMATI M, MILLS D K, URBANSKA A M, et al. Electrospinning for tissue engineering applications[J]. Progress in Materials Science, 2021, 117:100721.
doi: 10.1016/j.pmatsci.2020.100721
[19] 董文, 包敏, 李碧云, 等. 含石墨烯的聚乳酸复合纳米纤维的制备及细胞相容性[J]. 功能高分子学报, 2014, 27(2):147-156.
DONG Wen, BAO Min, LI Biyun, et al. Preparation and cytocompatibility evaluation of PLLA-graphene composite nanofibers[J]. Journal of Functional Polymers, 2014, 27(2):147-156.
[20] CARVALHO A P A, JUNIOR C A C. Green strategies for active food packagings: a systematic review on active properties of graphene-based nanomaterials and biodegradable polymers[J]. Trends in Food Science and Technology, 2020, 103:130-143.
doi: 10.1016/j.tifs.2020.07.012
[21] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339.
doi: 10.1021/ja01539a017
[22] WANG S D, ZHANG K Q. Electrogelation and rapid prototyping of Bombyx mori silk fibroin[J]. Materials Letters, 2016, 169:5-9.
doi: 10.1016/j.matlet.2016.01.079
[23] WANG K, MA Q, ZHANG Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage[J]. Cellulose, 2020, 27:1845-1852.
doi: 10.1007/s10570-019-02869-0
[24] WANG S D, MA Q, WANG K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibrous scaffolds modified by graphene oxide[J]. ACS Omega, 2018, 3:406-413.
doi: 10.1021/acsomega.7b01210
[25] KUDIN K N, OZBAS B, SCHNIEPP H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8:36-41.
doi: 10.1021/nl071822y
[26] KU S H, LEE M, PARK C B. Carbon-based nanomaterials for tissue engineering[J]. Advanced Healthcare Materials, 2013, 2(2):244-260.
doi: 10.1002/adhm.v2.2
[1] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[2] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[3] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[4] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[5] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[6] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[7] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[8] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[9] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[10] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[11] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[12] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[13] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[14] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[15] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[8] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[9] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[10] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .