纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 15-20.doi: 10.13475/j.fzxb.20210204706

• 纤维材料 • 上一篇    下一篇

纤维素/海藻酸钙共混纤维的制备及其性能

陈子晗1, 姚勇波2(), 生俊露2, 颜志勇2, 张玉梅3, 王华平3   

  1. 1.嘉兴南湖学院 时尚设计学院, 浙江 嘉兴 314001
    2.嘉兴学院 浙江省纱线材料成形与复合加工技术研究重点实验室, 浙江 嘉兴 314001
    3.东华大学 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2021-02-20 修回日期:2021-09-13 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 姚勇波
  • 作者简介:陈子晗(1989—),女,硕士。主要研究方向为天然高分子的溶解与再生。
  • 基金资助:
    浙江省自然科学基金项目(LQ17E030002);国家自然科学基金项目(21704034);浙江省纱线材料成形与复合加工技术研究重点实验室开放基金项目(MTC-2020-11)

Preparation and properties of cellulose/calcium alginate blend fiber

CHEN Zihan1, YAO Yongbo2(), SHENG Junlu2, YAN Zhiyong2, ZHANG Yumei3, WANG Huaping3   

  1. 1. Fashion Design Academy, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China
    2. Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. State Key Laboratory of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2021-02-20 Revised:2021-09-13 Published:2021-12-15 Online:2021-12-29
  • Contact: YAO Yongbo

摘要:

针对纤维素纤维易燃烧的问题,首先以离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM]Cl)为溶剂共溶解纤维素与海藻酸,然后以氯化钙溶液为凝固浴,采用干喷湿法纺丝制备了纤维素/海藻酸钙共混纤维。研究了纤维素/海藻酸钙组分比对共混纤维结构和性能的影响。结果表明:纤维素/海藻酸钙共混纤维结构致密,二者之间存在氢键相互作用;虽然海藻酸钙的存在使共混纤维的力学性能降低,但当海藻酸钙质量分数为30%时,共混纤维的断裂强度为123 MPa,离火自熄时间仅为1.1 s,表现出优良的离火自熄特性;纤维素/海藻酸钙共混纤维的吸湿平衡回潮率为7.33%~7.75%,具有类似再生纤维素纤维的优良吸湿性能与服用性能。

关键词: 纤维素, 海藻酸钙, 干喷湿法纺丝, 阻燃纤维, 离子液体

Abstract:

In order to reduce the flammability of cellulose fibers, ionic liquid 1-allyl-3-methylimidazole chloride ([AMIM]Cl) was used as co-solvent for cellulose and alginic acid. Then, the cellulose/calcium alginate blend fiber was prepared with calcium chloride solution as the coagulation bath by dry-jet wet spinning. The effect of cellulose/calcium alginate blend ratio on the structure and properties of the fibers were studied. The results show that the cross-section of the blend fibers is dense, and the hydrogen bond interactions exist between cellulose and calcium alginate molecules. Despite the fact of the mechanical strength of the blend fibers decreases with the increase of calcium alginate content, the tensile strength reaches 123 MPa when the content of calcium alginate is 30%, and the self-extinguishing time from fire of this fiber is only 1.1 s, indicating excellent self-extinguishing property. In addition, the moisture regain of cellulose/calcium alginate blend fibers is 7.33%-7.75%, representing good hygrophilic property and wearability for regenerated cellulose fibers.

Key words: cellulose, calcium alginate, dry-jet wet spinning, flame retardant fiber, ionic liquid

中图分类号: 

  • TQ341.5

表1

纤维素/海藻酸钙共混纤维纺丝条件"

样品
编号
海藻酸钙质量
分数/%
凝固浴组成 牵伸
倍数
1# 0 4
2# 10 5%氯化钙溶液 4
3# 20 5%氯化钙溶液 4
4# 30 5%氯化钙溶液 4

图1

纤维素/海藻酸钙共混纤维纺丝示意图"

图2

纤维素/海藻酸钙共混纤维的红外光谱图"

图3

纤维素/海藻酸钙共混纤维的XRD图"

图4

纤维素/海藻酸钙共混纤维的截面扫描电镜照片"

图5

纤维素/海藻酸钙共混纤维的热重曲线"

表2

纤维素/海藻酸钙共混纤维的力学性能"

样品
编号
直径/
μm
断裂强
度/MPa
初始模
量/GPa
断裂伸
长率/%
1# 73.2±4.3 195±22.9 3.41±0.48 14.7±2.3
2# 69.1±5.2 189±31.8 3.14±0.68 15.9±3.1
3# 63.4±6.7 139±34.7 3.01±0.54 10.4±1.9
4# 65.9±4.9 123±35.9 2.58±0.73 8.7±1.1

图6

纤维素/海藻酸钙共混纤维的燃烧性能"

图7

纤维素/海藻酸钙共混纤维的吸湿性能"

[1] 胡学超, 宋丽贞. 二十一世纪的宠儿:纤维素纤维[J]. 纺织学报, 1998, 19(1):63-64,26.
HU Xuechao, SONG Lizhen. The darling of the 21st century:cellulose fiber[J]. Journal of Textile Research, 1998, 19(1):63-64,26.
[2] 韩海云. 中欧消防员灭火防护服标准比较[J]. 消防科学与技术, 2010, 29(8):718-722.
HAN Haiyun. Comparative study on fire fighting protective clothing standards between China and European Union[J]. Fire Science and Technology, 2010, 29(8):718-722.
[3] 李振辉, 李霞, 于捍江, 等. 阻燃粘胶纤维研究进展[J]. 高分子通报, 2019(4):33-39.
LI Zhenhui, LI Xia, YU Hanjiang, et al. Research and advancement of flame-retardant fiber of regenerated cellulose[J]. Chinese Polymer Bulletin, 2019(4):33-39.
[4] 李树锋, 程博闻, 孙坤松, 等. 接枝改性阻燃高湿模量粘胶纤维的性能研究[J]. 纺织学报, 2006, 27(4):60-62.
LI Shufeng, CHENG Bowen, SUN Kunsong, et al. Study on the flame retardant HWM viscose fibers modified by grafting[J]. Journal of Textile Research, 2006, 27(4):60-62.
[5] 程博闻. 环境友好型阻燃纤维素纤维的阻燃性能及机理研究[J]. 天津工业大学学报, 2005, 24(1):1-3.
CHENG Bowen. Study on properties and mechanism of eco-friendly fire-retardant cellulose[J]. Journal of Tiangong University, 2005, 24(1):1-3.
[6] WU Kaijian, YAO Yongbo, YU Jinchao, et al. Cellulose/aromatic polysulfonamide blended fibers with improved properties[J]. Cellulose, 2017, 24(8):3377-3386.
doi: 10.1007/s10570-017-1351-5
[7] 程筒, 姚勇波, 陈忠丽, 等. 基于N-甲基吗啉-N-氧化物溶剂制备聚芳砜酰胺/纤维素阻燃纤维[J]. 纺织学报, 2019, 40(7):1-7.
CHENG Tong, YAO Yongbo, CHEN Zhongli, et al. Preparation of flame retardant aromatic polysulfonamide/cellulose fibers with N-methylmorpholine-N-oxide monohydrate as solvent[J]. Journal of Textile Research, 2019, 40(7):1-7.
[8] LEE Kuenyong, MOONEY David J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1):106-126.
pmid: 22125349
[9] ZHANG Chuanjie, LIU Yun, CUI Li, et al. Bio-based calcium alginate nonwoven fabrics: flame retardant and thermal degradation properties[J]. Journal of Analy-tical & Applied Pyrolysis, 2016, 122(11):13-23.
[10] KIM Yoojoo, YOON Keejong, KO Sohkwon. Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde[J]. Journal of Applied Polymer Science, 2000, 78(10):1797-1804.
doi: 10.1002/(ISSN)1097-4628
[11] MUENDUEN Phisalaphong, SUWANMAJO Thapanar, TAMMARATE Pramote. Synjournal and characterization of bacterial cellulose/alginate blend membranes[J]. Journal of Applied Polymer Science, 2010, 107(5):3419-3424.
doi: 10.1002/(ISSN)1097-4628
[12] MAXIM M L, WHITE J F, BLOAK L E, et al. Advance biopolymer composite materials from ionic liquid solutions[M]. Ionic Liquids: Science and Applications, 2012:29-36.
[13] YANG G, ZHANG L, TAO P, et al. Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes[J]. Journal of Membrane Science, 2000, 175(1):53-60.
doi: 10.1016/S0376-7388(00)00407-5
[14] SHAMSHINA J L, GURAU G, BLOCK L E, et al. Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution[J]. Journal of Materials Chemistry B, 2014, 2(25):3924-3936.
doi: 10.1039/C4TB00329B
[15] ZUGENMAIER P. Order in cellulosics: historical review of crystal structure research on cellulose[J]. Carbohydrate Polymers, 2021, 254:117417.
doi: 10.1016/j.carbpol.2020.117417
[16] XU Z, YAO Y, SHENG J, et al. Rheology of cellulose/alginic acid blends with 1-allyl-3-methylimidazolium chloride as solvent[J]. Polymer Engineering & Science, 2020, 60(2):243-249.
[17] PAWEL Sikorski, FRODE Mo, GUDMUND Skjak Braek, et al. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction[J]. Biomacromolecules, 2007, 8(7):2098-2103.
pmid: 17530892
[18] ZHANG X S, XIA Y Z, SHI M W, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chinese Chemical Letters, 2018, 29(3):489-492.
doi: 10.1016/j.cclet.2017.07.023
[19] WANG B, LI P, XU Y J, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J]. Composites Part B: Engineering, 2020, 194:108038.
doi: 10.1016/j.compositesb.2020.108038
[20] SIROKA B, NOISTERNIG M, GRIESSER U J, et al. Characterization of cellulosic fibers and fabrics by sorption/desorption[J]. Carbohydrate Research, 2008, 343(12):2194-2199.
doi: 10.1016/j.carres.2008.01.037
[21] YAO Y, ZHANG E, XIA X, et al. Morphology and properties of cellulose/silk fibroin blend fiber preparedwith 1-butyl-3-methylimidazolium chloride as solvent[J]. Cellulose, 2015, 22(1):625-635.
doi: 10.1007/s10570-014-0520-z
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/ 经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 骆晓蕾, 刘琳, 姚菊明 . 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[3] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[4] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[5] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[6] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[7] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[8] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[9] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[10] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[11] 袁久刚, 季吉, 薛琪, 姜哲, 范雪荣, 高卫东. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(01): 35-39.
[12] 黎俊妤, 蒋培清, 张文奇, 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[13] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[14] 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94.
[15] 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .