纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 15-20.doi: 10.13475/j.fzxb.20210204706
陈子晗1, 姚勇波2(), 生俊露2, 颜志勇2, 张玉梅3, 王华平3
CHEN Zihan1, YAO Yongbo2(), SHENG Junlu2, YAN Zhiyong2, ZHANG Yumei3, WANG Huaping3
摘要:
针对纤维素纤维易燃烧的问题,首先以离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM]Cl)为溶剂共溶解纤维素与海藻酸,然后以氯化钙溶液为凝固浴,采用干喷湿法纺丝制备了纤维素/海藻酸钙共混纤维。研究了纤维素/海藻酸钙组分比对共混纤维结构和性能的影响。结果表明:纤维素/海藻酸钙共混纤维结构致密,二者之间存在氢键相互作用;虽然海藻酸钙的存在使共混纤维的力学性能降低,但当海藻酸钙质量分数为30%时,共混纤维的断裂强度为123 MPa,离火自熄时间仅为1.1 s,表现出优良的离火自熄特性;纤维素/海藻酸钙共混纤维的吸湿平衡回潮率为7.33%~7.75%,具有类似再生纤维素纤维的优良吸湿性能与服用性能。
中图分类号:
[1] | 胡学超, 宋丽贞. 二十一世纪的宠儿:纤维素纤维[J]. 纺织学报, 1998, 19(1):63-64,26. |
HU Xuechao, SONG Lizhen. The darling of the 21st century:cellulose fiber[J]. Journal of Textile Research, 1998, 19(1):63-64,26. | |
[2] | 韩海云. 中欧消防员灭火防护服标准比较[J]. 消防科学与技术, 2010, 29(8):718-722. |
HAN Haiyun. Comparative study on fire fighting protective clothing standards between China and European Union[J]. Fire Science and Technology, 2010, 29(8):718-722. | |
[3] | 李振辉, 李霞, 于捍江, 等. 阻燃粘胶纤维研究进展[J]. 高分子通报, 2019(4):33-39. |
LI Zhenhui, LI Xia, YU Hanjiang, et al. Research and advancement of flame-retardant fiber of regenerated cellulose[J]. Chinese Polymer Bulletin, 2019(4):33-39. | |
[4] | 李树锋, 程博闻, 孙坤松, 等. 接枝改性阻燃高湿模量粘胶纤维的性能研究[J]. 纺织学报, 2006, 27(4):60-62. |
LI Shufeng, CHENG Bowen, SUN Kunsong, et al. Study on the flame retardant HWM viscose fibers modified by grafting[J]. Journal of Textile Research, 2006, 27(4):60-62. | |
[5] | 程博闻. 环境友好型阻燃纤维素纤维的阻燃性能及机理研究[J]. 天津工业大学学报, 2005, 24(1):1-3. |
CHENG Bowen. Study on properties and mechanism of eco-friendly fire-retardant cellulose[J]. Journal of Tiangong University, 2005, 24(1):1-3. | |
[6] |
WU Kaijian, YAO Yongbo, YU Jinchao, et al. Cellulose/aromatic polysulfonamide blended fibers with improved properties[J]. Cellulose, 2017, 24(8):3377-3386.
doi: 10.1007/s10570-017-1351-5 |
[7] | 程筒, 姚勇波, 陈忠丽, 等. 基于N-甲基吗啉-N-氧化物溶剂制备聚芳砜酰胺/纤维素阻燃纤维[J]. 纺织学报, 2019, 40(7):1-7. |
CHENG Tong, YAO Yongbo, CHEN Zhongli, et al. Preparation of flame retardant aromatic polysulfonamide/cellulose fibers with N-methylmorpholine-N-oxide monohydrate as solvent[J]. Journal of Textile Research, 2019, 40(7):1-7. | |
[8] |
LEE Kuenyong, MOONEY David J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1):106-126.
pmid: 22125349 |
[9] | ZHANG Chuanjie, LIU Yun, CUI Li, et al. Bio-based calcium alginate nonwoven fabrics: flame retardant and thermal degradation properties[J]. Journal of Analy-tical & Applied Pyrolysis, 2016, 122(11):13-23. |
[10] |
KIM Yoojoo, YOON Keejong, KO Sohkwon. Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde[J]. Journal of Applied Polymer Science, 2000, 78(10):1797-1804.
doi: 10.1002/(ISSN)1097-4628 |
[11] |
MUENDUEN Phisalaphong, SUWANMAJO Thapanar, TAMMARATE Pramote. Synjournal and characterization of bacterial cellulose/alginate blend membranes[J]. Journal of Applied Polymer Science, 2010, 107(5):3419-3424.
doi: 10.1002/(ISSN)1097-4628 |
[12] | MAXIM M L, WHITE J F, BLOAK L E, et al. Advance biopolymer composite materials from ionic liquid solutions[M]. Ionic Liquids: Science and Applications, 2012:29-36. |
[13] |
YANG G, ZHANG L, TAO P, et al. Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes[J]. Journal of Membrane Science, 2000, 175(1):53-60.
doi: 10.1016/S0376-7388(00)00407-5 |
[14] |
SHAMSHINA J L, GURAU G, BLOCK L E, et al. Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution[J]. Journal of Materials Chemistry B, 2014, 2(25):3924-3936.
doi: 10.1039/C4TB00329B |
[15] |
ZUGENMAIER P. Order in cellulosics: historical review of crystal structure research on cellulose[J]. Carbohydrate Polymers, 2021, 254:117417.
doi: 10.1016/j.carbpol.2020.117417 |
[16] | XU Z, YAO Y, SHENG J, et al. Rheology of cellulose/alginic acid blends with 1-allyl-3-methylimidazolium chloride as solvent[J]. Polymer Engineering & Science, 2020, 60(2):243-249. |
[17] |
PAWEL Sikorski, FRODE Mo, GUDMUND Skjak Braek, et al. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction[J]. Biomacromolecules, 2007, 8(7):2098-2103.
pmid: 17530892 |
[18] |
ZHANG X S, XIA Y Z, SHI M W, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chinese Chemical Letters, 2018, 29(3):489-492.
doi: 10.1016/j.cclet.2017.07.023 |
[19] |
WANG B, LI P, XU Y J, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J]. Composites Part B: Engineering, 2020, 194:108038.
doi: 10.1016/j.compositesb.2020.108038 |
[20] |
SIROKA B, NOISTERNIG M, GRIESSER U J, et al. Characterization of cellulosic fibers and fabrics by sorption/desorption[J]. Carbohydrate Research, 2008, 343(12):2194-2199.
doi: 10.1016/j.carres.2008.01.037 |
[21] |
YAO Y, ZHANG E, XIA X, et al. Morphology and properties of cellulose/silk fibroin blend fiber preparedwith 1-butyl-3-methylimidazolium chloride as solvent[J]. Cellulose, 2015, 22(1):625-635.
doi: 10.1007/s10570-014-0520-z |
[1] | 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/ 经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171. |
[2] | 骆晓蕾, 刘琳, 姚菊明 . 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8. |
[3] | 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48. |
[4] | 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183. |
[5] | 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18. |
[6] | 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24. |
[7] | 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30. |
[8] | 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10. |
[9] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[10] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[11] | 袁久刚, 季吉, 薛琪, 姜哲, 范雪荣, 高卫东. 羊毛角蛋白在巯基乙酸胆碱中的溶解再生[J]. 纺织学报, 2021, 42(01): 35-39. |
[12] | 黎俊妤, 蒋培清, 张文奇, 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30. |
[13] | 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40. |
[14] | 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94. |
[15] | 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88. |
|