纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 180-187.doi: 10.13475/j.fzxb.20200907708

• 综合述评 • 上一篇    下一篇

航天器用高性能纤维编织绳索研究进展

丁许1,2, 孙颖1,2(), 罗敏3, 王兴泽3, 陈利1,2, 陈光伟1,2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.北京空间飞行器总体设计部, 北京 100094
  • 收稿日期:2020-09-29 修回日期:2021-08-23 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 孙颖
  • 作者简介:丁许(1992—),男,博士生。主要研究方向为高性能编织材料力学性能。

Research progress in braided cordage made from high-performance fibers for spacecraft applications

DING Xu1,2, SUN Ying1,2(), LUO Min3, WANG Xingze3, CHEN Li1,2, CHEN Guangwei1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
  • Received:2020-09-29 Revised:2021-08-23 Published:2021-12-15 Online:2021-12-29
  • Contact: SUN Ying

摘要:

针对空间系绳、桁架式网状可展开天线、热刀压紧释放装置等航天器结构轻量化场景对高性能纤维编织绳索的应用需求,介绍了航天航空工业中常用高性能有机纤维的性能特点,编织绳索的几何结构类型以及在航天器结构中的应用现状。分析了编织绳索在航天器结构中应用存在的主要问题,认为编织绳索的蠕变和应力松弛性能是影响航天器长期服役过程中结构稳定性的关键因素;重点阐述了纤维材料、环境条件、载荷水平等因素对编织绳索蠕变和应力松弛性能的影响;最后指出当前研究中仍存在的一些关键问题,并针对这些问题提出研究建议,期望为航空航天用高性能、高稳定性、可调可控编织绳索的研制提供参考。

关键词: 航天器, 热刀压紧释放装置, 编织绳索, 蠕变, 应力松弛

Abstract:

According to the application requirements of braided cordages mode from high-performance fibers in the lightweight scenes of spacecraft structures, such as space tether, truss mesh deployable antenna, thermal knife holding and releasing device. The performance of high-performance organic fibers used in the aerospace industry, braided structures and applications of cordage in spacecraft structures were reviewed. The main problems existing in the application of braided cordages in spacecraft structures were analyzed and the creep and stress relaxation properties of braided cordages are the key factors affecting the structural stability of spacecraft during long-term service. Then, the effects of materials, environmental conditions, and load levels on the creep and stress relaxation behavior of braided cordages were introduced. Finally, some problems existed in the current researches were pointed out, and the future research directions were proposed in view of these problems. It is expected that this work would provide a reference for the development of high-performance, high-stability, adjustable and controllable braided cordages for aerospace applications.

Key words: spacecraft, thermal knife holding and releasing device, braided cordage, creep, stress relaxation

中图分类号: 

  • TS106.5

表1

高性能纤维性能参数"

纤维及牌号 生产商 密度/
(g·cm-3)
比强度/
(cN·tex-1)
比模量/
(cN·tex-1)
长期使用最
高温度/℃
熔点/
公定回潮
率/%
耐辐射
性能
参考
文献
芳纶(Kevlar®49) 美国DuPont公司 1.44 208 4 900 149~177 560 3.5
芳纶(泰普龙®529S) 烟台泰和新材料
股份有限公司
1.44 216 6 255 113~134 >500 3.5
聚芳酯(Vectran®HT 560) 日本Kuraray公司 1.40 229 5 300 < 100 330 < 0.1 [18]
超高分子量聚乙烯
(Dyneema®SK 78)
荷兰DSM集团 0.97 370 11 900 < 70 150 < 1.0 [19]
超高分子量聚乙烯
(DOYENTRONTEX®)
北京同益中新材料
科技股份有限公司
0.97 360 12 500 < 0.1 [20]
聚酰亚胺(P84) 德国Evonik公司 1.41 38 1 455 250 315 < 1.0 [21]
聚酰亚胺(S35) 江苏先诺新材料
有限公司
1.44 236 6 250 < 350 320 < 1.0 [22]

图1

编织绳索纱线运动路径和基本结构"

表2

空间系绳实验任务"

任务名称 年份 纤维材料 系绳长
度/km
系绳直
径/mm
TSS-1[30,31] 1992 Nomex®、Kevlar®、铜线 20 2.54
SEDS-1[32] 1993 Spectra® 20 0.78
SEDS-2[33] 1994 Spectra® 20 0.78
TiPS[34] 1996 Spectra®、丙烯酸 4 2
ProSEDS[35,36] 2003 Dyneema®、Kevlar®、铝线 15 0.8~1.6
STARS-II[37] 2014 Kevlar®、铝线 0.35
STARS-C[38] 2016 Kevlar® 0.1 0.4
STARS-Me[38] 2018 Kevlar® 2 < 1

图2

天线索网结构变形"

图3

热刀压紧释放装置"

[1] CARTMELL M, MCKENZIE D. A review of space tether research[J]. Progress in Aerospace Sciences, 2008, 44(1):1-21.
doi: 10.1016/j.paerosci.2007.08.002
[2] MOORE C. Practical applications of cables and ropes in the ISS countermeasures system[C]// SVETLIK R, WILLIAMS A. Proceedings of 2017 IEEE Aerospace Conference. New York:IEEE, 2017: 1-15.
[3] XU C, LI J, YAO Y, et al. Research of cable deformation effects on synchronous accuracy of serial cable-driven sheaves[J]. Advances in Mechanical Engineering, 2017, 9(9):1-13.
[4] LIU S, LI D X, JIANG J P. General mesh configuration design approach for large cable-network antenna reflectors[J]. Journal of Structural Engineering, 2014, 140(2):1-9.
[5] FENG C, CHU Z. Fiber reinforcement[M]. Singapore: Springer, 2018: 63-150.
[6] SHARMA R, GOEL A, MEHTAB S. High performance fibre-aramids[J]. Man-Made Textiles in India, 2012, 40(11):373-377.
[7] 钱坤, 曹海建, 盛东晓, 等. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10):10-13.
QIAN Kun, CAO Haijian, SHENG Dongxiao, et al. Influence of low temperature plasma treatment on surface performance of aramid fibers[J]. Journal of Textile Research, 2010, 31(10):10-13.
[8] 姜兆辉, 金梦甜, 郭增革, 等. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12):9-15.
JIANG Zhaohui, JIN Mengtian, GUO Zengge, et al. Chemical stability and corrosion degradation of polyarylester fiber[J]. Journal of Textile Research, 2019, 40(12):9-15.
[9] GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars science laboratory mission and science investiga-tion[J]. Space Science Reviews, 2012, 170(1-4):5-56.
doi: 10.1007/s11214-012-9892-2
[10] NASA Jet Propulsion Laboratory(JPL). Device for lowering mars science laboratory rover to the surface[EB/OL].(2008-11-19) [2020-06-15]. https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11428.
[11] BALAGNA C, IRFAN M, PERERO S, et al. Antibacterial nanostructured composite coating on high performance VectranTM fabric for aerospace struc-tures[J]. Surface and Coatings Technology, 2019, 373:47-55.
doi: 10.1016/j.surfcoat.2019.05.076
[12] LARSON K. Ultraviolet testing of space suit materials for mars[C]// 47th International Conference on Environmental Systems. Charleston:The Space Journal of Asgardia, 2017: 1-7.
[13] 刘羽熙, 刘宇艳, 王长国, 等. 减缓Vectran纤维光辐照降解的涂层防护研究[J]. 装备环境工程, 2020, 17(1):20-24.
LIU Yuxi, LIU Yuyan, WANG Changguo, et al. Coating protection against photodegradation of Vectran fibers[J]. Equipment Environmental Engineering, 2020, 17(1):20-24.
[14] CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures[J]. Acta Astronautica, 2020, 168:182-190.
doi: 10.1016/j.actaastro.2019.12.008
[15] WANG H, XU L, LI R, et al. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing[J]. Radiation Physics and Chemistry, 2016, 125:41-49.
doi: 10.1016/j.radphyschem.2016.03.009
[16] ZHANG M, NIU H, WU D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications[J]. Macromolecular Rapid Communications, 2018, 39(20):1-14.
[17] 张梦颖, 牛鸿庆, 韩恩林, 等. 高强高模聚酰亚胺纤维及其应用研究[J]. 绝缘材料, 2016, 49(8):12-16.
ZHANG Mengying, NIU Hongqing, HAN Enlin, et al. Research and application of polyimide fibers with high strength and high modulus[J]. Insulating Materials, 2016, 49(8):12-16.
[18] Kuraray. Vectran brochure[EB/OL]. (2015-06-12) [2020-06-15]. https://www.vectranfiber.com/wp-content/uploads/2015/12/Kuraray-Vectran-rochure.pdf.
[19] DSM. Dyneema® high-strength, high-modulus polyethylene fiber[EB/OL]. (2008-01-01) [2020-06-15]. https://www.air-work.swiss/unuSiteManager/Presentation/Public/upload/doc/dyneema.pdf.
[20] DuPont. Kevlar technical guide[EB/OL]. (2019-03-19) [2020-06-15]. https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf.
[21] Evonik Fibres GmbH. Technical brochure-P84® fibers[EB/OL]. [2020-06-15]. https://www.p84.com/product/peek-industrial/downloads/p84-fibre-technical-brochure.pdf.
[22] 北京同益中新材料科技股份有限公司. DOYENTRONTEX® 纤维[EB/OL]. [2020-06-15]. http://www.bjtyz.com/content/details2_133.html.
Beijing Tongyizhong New Material Technology Corporation. DOYENTRONTEX® fiber [EB/OL]. [2020-06-15]. http://www.bjtyz.com/content/details2_133.html.
[23] MCKENNA H A, HEARLE J W, O'HEAR N. Handbook of fibre rope technology[M]. London: Elsevier, 2004:5-32.
[24] 赵倩娟, 焦亚男. 二维编织包芯绳索的结构与拉伸性能[J]. 纺织学报, 2012, 33(3):48-52.
ZHAO Qianjuan, JIAO Ya'nan. The structure and tensile properties of 2D braided cored rope[J]. Journal of Textile Research, 2012, 33(3):48-52.
[25] MICHAEL M, KERN C, HEINZE T. Braiding processes for braided ropes[J]. Advances in Braiding Technology, 2016.DOI: 10.1016/B978-0-08-100407-4.00009-0.
doi: 10.1016/B978-0-08-100407-4.00009-0
[26] LAOURINE E. Braided semi-finished products and braiding techniques, textile materials for lightweight constructions[M]. New York: Springer, 2016: 289-306.
[27] WILLIAMS P. A review of space tether technology[J]. Recent Patents on Space Technology, 2012, 2(1):22-36.
doi: 10.2174/1877611611202010022
[28] SASAKI S, OYAMA K, KAWASHIMA N, et al. Results from a series of tethered rocket experiments[J]. Journal of Spacecraft and Rockets, 1987, 24(5):444-453.
doi: 10.2514/3.25937
[29] KAWASHIMA N, SASAKI S, OYAMA K, et al. Results from a tethered rocket experiment (charge-2)[J]. Advances in Space Research, 1988, 8(1):197-201.
[30] CHAPEL J D, FLANDERS H. Tether dynamics and control results for tethered satellite system's initial flight[J]. NASA STI/Recon Technical Report A, 1993, 95:327-346.
[31] STONE N H, RAITT W, WRIGHT J R K. The TSS-1R electrodynamic tether experiment: scientific and technological results[J]. Advances in Space Research, 1999, 24(8):1037-1045.
doi: 10.1016/S0273-1177(99)00551-7
[32] CARROLL J. SEDS deployer design and flight performance[M]. Reston: AIAA ARC, 1993: 47-64.
[33] CARROLL J. Tethers for small satellite applica-tions[C]// OLDSON J. Small Satellite Conference. Reston:AIAA ARC, 1995: 16.
[34] PEARSON J. Overview of the electrodynamic delivery express (EDDE)[C]// CARROLL J, LEVIN E. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA ARC, 2003: 1-14.
[35] GILCHRIST B. Propulsive small expandable deployer system (ProSEDS): preparing or flight[C]// BALANCE J, CURTIS L. 27th International Electric Propulsion Conference. Vienna: Electric Rocket Propulsion Society, 2001: 1-8.
[36] CURTIS L. Development of the flight tether for ProSEDS[C]// VAUGHN J, WELZYN K. AIP Conference Proceedings. New York:American Institute of Physics, 2002: 385-392.
[37] NOHMI M. Initial orbital performance result of nano-satellite stars-II[C]// Proceedings of the 2014 International Symposium on Artificial Intelligence, Robots and Automation in Space. Madrid:ESA Special Publication, 2014: 1-7.
[38] MASAHIRO N. Past results and future missions of STARS series satellite[C]// 18th Australian International Aerospace Congress (2019). Crows Nest:Engineers Australia, Royal Aeronautical Society, 2019: 1-6.
[39] ANSELMO L, PARDINI C. The survivability of space tether systems in orbit around the earth[J]. Acta Astronautica, 2005, 56(3):391-396.
doi: 10.1016/j.actaastro.2004.05.067
[40] KHAN S B, SANMARTIN J R. Analysis of tape tether survival in LEO against orbital debris[J]. Advances in Space Research, 2014, 53(9):1370-1376.
doi: 10.1016/j.asr.2014.02.008
[41] LOBANOV L, USTINOV A, VOLKOV V, et al. Al/TiO2 bilayer coatings for space applications: mechanical and thermoradiation properties[J]. Thin Solid Films, 2018, 668:30-37.
doi: 10.1016/j.tsf.2018.10.017
[42] HIROSAWA H, HIRABAYASHI H, KOBAYASHI H, et al. Space vlbi satellite halca and its engineering accomplishments[J]. Acta Astronautica, 2002, 50(5):301-309.
doi: 10.1016/S0094-5765(01)00171-0
[43] MEGURO A, SHINTATE K, USUI M, et al. In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII[J]. Acta Astronautica, 2009, 65(9):1306-1316.
doi: 10.1016/j.actaastro.2009.03.052
[44] QI X, HUANG H, LI B, et al. A large ring deployable mechanism for space satellite antenna[J]. Aerospace Science and Technology, 2016, 58:498-510.
doi: 10.1016/j.ast.2016.09.014
[45] TANAKA H. Surface error estimation and correction of a space antenna based on antenna gainanalyses[J]. Acta Astronautica, 2011, 68(7/8):1062-1069.
doi: 10.1016/j.actaastro.2010.09.025
[46] TANG Y, LI T, WANG Z, et al. Surface accuracy analysis of large deployable antennas[J]. Acta Astronautica, 2014, 104(1):125-133.
doi: 10.1016/j.actaastro.2014.07.029
[47] TANG Y, LI T, MA X. Form finding of cable net reflector antennas considering creep and recovery behaviors[J]. Journal of Spacecraft and Rockets, 2016, 53(4):610-618.
doi: 10.2514/1.A33548
[48] 姜水清, 刘立平. 热刀致动的压紧释放装置研制[J]. 航天器工程, 2005, 14(4):31-34.
JIANG Shuiqing, LIU Liping. Development of the hold-down and release mechanism using thermal knife[J]. Spacecraft Engineering, 2005, 14(4):31-34.
[49] VANHASSEL R H. The ARA Mark 3 solar array design and development:CP-3328[R]. Washington:NASA, 1996: 119-134.
[50] YATES H. The EOS-PM1 solar array[C]// ZWANENBURG R. Proceedings of the Fifth European Space Power Conference (ESPC). Noordwijk:Esa Special Publication, 1998: 557.
[51] 曹长明, 关富玲, 黄河, 等. 新型热刀式锁紧释放装置设计与实验[J]. 浙江大学学报 (工学版), 2016, 50(12):2350-2356.
CAO Changming, GUAN Fuling, HUANG He, et al. Design and test of new thermal knife restraint and release device[J]. Journal of Zhejiang Univer-sity (Engineering Science), 2016, 50(12):2350-2356.
[52] KONINK T. Multipurpose holddown and release mechanism (MHRM)[C]// KESTER G. The 13th European Space Mechanisms and Tribology Sympo-sium(ESTMAS). Madrid:Esa Special Publication, 2009: 1-4.
[53] BONGERS E. Robustness improvement of ARA kevlar holddown restraint cables[C]// KONING J, KONINK T. 15th European Space Mechanisms & Tribology Symposium (ESMATS). Noordwijk:Esa Special Publication, 2013: 1-7.
[54] 李新立, 姜水清, 刘宾. 热刀式压紧释放装置释放可靠性验证实验及评估方法[J]. 航天器工程, 2012, 21(2):123-126.
LI Xinli, JIANG Shuiqing, LIU Bin. Release reliability validation tests and evaluation methods for the hold-down and release mechanism using thermal knife[J]. Spacecraft Engineering, 2012, 21(2):123-126.
[55] AUGUSTIJN J, GRIMMINCK M, BONGERS E, et al. Development of a non explosive low shock (NELS) holddown and release system[C]// 16th European Space Mechanisms and Tribology Symposium. Paris:Esa Special Publication, 2015: 1-6.
[56] FETTE R B, SOVINSKI M F. Vectran fiber time dependant behavior and additional static loading properties:TM-2004-212773[R]. Greenbelt: NASA, 2004: 1-21.
[57] FETE R B. Relaxation of Kevlar braided cords[D]. Washington DC: The George Washington University, 2004:1-42.
[58] JONES T, DOGGETT W, STANFIELD C, et al. Accelerated creep testing of high strength aramid webbing:NF1676L-13173[R]. Washington: NASA, 2012: 1-14.
[59] 丁许. 二维编织绳拉伸性能实验研究[D]. 天津: 天津工业大学, 2019: 61.
DING Xu. Experimental study on tensile properties of two-dimensional braided rope[D]. Tianjin: Tiangong University, 2019: 61.
[60] 李伟. Vectran纤维与绳索的蠕变与应力松弛行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 59.
LI Wei. Research on creep and stress relaxation of Vectran fiber and rope[D]. Harbin: Harbin Institute of Technology, 2010: 59.
[61] JONES T, DOGGETT W. Time-dependent behavior of high strength Kevlar and Vectran webbing:NF1676L-16713[R]. Washington: NASA, 2014: 1-22.
[62] KENNER W S. Environmental effects on long term displacement data of woven fabric webbings under constant load for inflatable structures:NF1676L-19010[R]. Reston: NASA, 2015: 1-29.
[63] KENNER W S, JONES T C, BOFFE V M L. Controlled environmental effects on creep test data of woven fabric webbings for inflatable space modules:TM-2020-220561[R]. Washington: NASA, 2020:1-12.
[64] 杨惠杰. 聚酰亚胺编织绳的热机械变形规律及影响因素[D]. 哈尔滨: 哈尔滨工业大学, 2017: 56.
YANG Huijie. Thermomechanical deformation of polyimide braided rope and its influencing factors[D]. Harbin: Harbin Institute of Technology, 2017: 56.
[65] TANG Y, LI T, MA X. Creep and recovery behavior analysis of space mesh structures[J]. Acta Astronautica, 2016, 128(11/12):455-463.
doi: 10.1016/j.actaastro.2016.08.003
[66] HUANG W, LIU H, LIAN Y, et al. Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings[J]. Applied Ocean Research, 2013, 39:113-120.
doi: 10.1016/j.apor.2012.10.004
[67] LIAN Y, ZHENG J, LIU H, et al. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling[J]. Ocean Engineering, 2018, 162:43-54.
doi: 10.1016/j.oceaneng.2018.05.003
[1] 汪泽幸, 李帅, 谭冬宜, 孟硕, 何斌. 循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响[J]. 纺织学报, 2021, 42(07): 101-107.
[2] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[3] 汪泽幸, 吴波, 李帅, 何斌. 循环应力松弛下黄麻织物/聚乙烯复合材料能量耗散演化规律[J]. 纺织学报, 2020, 41(10): 74-80.
[4] 汪泽幸 刘超 何斌 周锦涛 李洪登. 聚氯乙烯涂层膜材料非线性蠕变性能预测[J]. 纺织学报, 2018, 39(10): 68-73.
[5] 曹意 陈韶娟 尹德河 曹洪花 马建伟. 碱溶性涤纶/锦纶6海岛纤维各组分性能解析[J]. 纺织学报, 2018, 39(09): 15-21.
[6] 汪泽幸 何斌 陈妍 李洪登. 损伤条件下聚氯乙烯涂层膜结构材料拉伸蠕变特性[J]. 纺织学报, 2017, 38(10): 57-64.
[7] 周蛟;王际平;冯新星;陈建勇. 线密度和组织结构对牛仔面料保型性的影响[J]. 纺织学报, 2010, 31(1): 44-47.
[8] 梁方阁;程隆棣;刘燕;刘小珍;邵楠. 彩棉喷气涡流纺纱线应力松弛机制分析[J]. 纺织学报, 2008, 29(8): 27-29.
[9] 肖丰;李营建. 氨纶包芯纱蠕变性能测试与分析[J]. 纺织学报, 2007, 28(6): 48-51.
[10] 朱勇奕;刘晓明;陈南梁. PVC 压延柔性复合材料应力松弛的力学模型[J]. 纺织学报, 2007, 28(11): 36-39.
[11] 刘保生;顾肇文;王其. 十字形PTT与PET长丝的力学性能模型[J]. 纺织学报, 2007, 28(10): 4-8.
[12] 侯秀良.;高卫东;王善元;周启澄. 山羊绒纤维的拉伸性能[J]. 纺织学报, 2007, 28(10): 18-22.
[13] 马建伟;刘伟;陈韶娟. 纳米功能锦纶的力学性能[J]. 纺织学报, 2006, 27(1): 62-64.
[14] 张涛<sup></sup>鲍文斌<sup></sup>俞建勇<sup></sup>. 竹浆纤维力学性能的模拟分析[J]. 纺织学报, 2005, 26(1): 28-29.
[15] 李营建;肖丰. 大豆蛋白纤维氨纶包芯纱的蠕变性能[J]. 纺织学报, 2005, 26(1): 78-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[8] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[9] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .