纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 58-66.doi: 10.13475/j.fzxb.20210909310

• 纺织工程 • 上一篇    下一篇

基于碳中和的人-机-料-法-环五位一体纺纱新技术解析

夏治刚1,2,3, 徐傲1,2, 万由顺4, 卫江4, 张慧霞5, 唐建东5, 郑敏博5, 郭沁生6, 丁彩玲7, 杨圣明8, 徐卫林1,2()   

  1. 1.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    3.青岛大学 省部共建生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
    4.武汉裕大华纺织服装集团有限公司, 湖北 武汉 430080
    5.际华三五四二纺织有限公司, 湖北 襄阳 441002
    6.经纬智能纺织机械有限公司, 山西 晋中 030601
    7.山东如意科技集团有限公司, 山东 济宁 272073
    8.安徽华茂纺织集团有限公司, 安徽 安庆 272073
  • 收稿日期:2021-09-26 修回日期:2021-11-04 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 徐卫林
  • 作者简介:夏治刚 (1983—),男,教授,博士。主要研究方向为纺纱新技术与装备。
  • 基金资助:
    国家工信部智能制造新模式运用项目(2017168);省部共建生物多糖纤维成形与生态纺织国家重点实验室开放课题项目(KF2020215);际华三五四二纺织有限公司委托开发项目(JH3542-KJFB-20191001);湖北省重点研发计划项目(2020BAB082)

Analysis of new five-element-integration spinning technology based on human-machine-material-method-environment for carbon neutralization

XIA Zhigang1,2,3, XU Ao1,2, WAN Youshun4, WEI Jiang4, ZHANG Huixia5, TANG Jiandong5, ZHENG Minbo5, GUO Qinsheng6, DING Cailing7, YANG Shengming8, XU Weilin1,2()   

  1. 1. Key Laboratory Base of New Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
    4. Wuhan Yudahua Textile and Garment Group Co., Ltd., Wuhan, Hubei 430080, China
    5. Jihua 3542 Textile Co., Ltd., Xiangyang, Hubei 441002, China
    6. Jingwei Intelligent Textile Machinery Co., Ltd., Jinzhong, Shanxi 030601, China
    7. Shandong Ruyi Science & Technology Group Co., Ltd., Jining, Shandong 272073, China
    8. Anhui Huamao Group Co., Ltd., Anqing, Anhui 272073, China
  • Received:2021-09-26 Revised:2021-11-04 Published:2022-01-15 Online:2022-01-28
  • Contact: XU Weilin

摘要:

传统纺纱工序长而散、用工多,造成单产能耗高、产品一致性差、运营成本高等行业痛点问题;纱线原料的多元化使原料及成品回收难度大。为实现2030年碳达峰、2060年碳中和目标,提出了人-机-料-法-环的五位一体化碳中和纺纱的低碳生产策略,凝练并分析了集约型、简约型和延伸型低碳纺纱技术。分析结果表明:与传统纺纱相比,集约型智能纺技术运行成本降低32.67%,单位产品能耗降低17.5%、产品不良率降低61.54%,有效解决了纺纱行业的痛点问题,实现低碳高质纺纱;简约型高速纺纱技术能缩短或消除纺纱流程,纺纱速度高达550 m/min,实现了降低碳排放、提高效率的目标;低碳纺纱发展方向要向前后端延伸,对前端原料要多应用功能化循环利用技术、变废为宝技术、节能减排技术,在中端要发展固碳纺纱技术和循环利用技术,在终端研发绿色环保纺织品的制冷、隔热等功能纱制备技术。

关键词: 碳中和, 碳达峰, 低碳纺纱, 节能减排, 纺纱新技术

Abstract:

Conventional spinning process is characterized by its long scattered processes and labor intensiveness, causing problems such as high energy consumption per unit production, poor product consistency, and high operating cost. In addition, multiple-type-fiber spinning leads to difficulty in fiber recycling from raw materials and resultant products. As an effort to achieve the goal of carbon peaking in 2030 and carbon neutrality in 2060, this paper establishes a low-carbon spinning strategy as carbon neutralization spinning by integrating human-machine-material-method-environment. In specific, the intensive, simple and the extensive types of low-carbon spinning technologies were analyzed. The analysis results show that after comparison with conventional ring spinning, the intensive intelligent technology achieves low-carbon and high-quality spinning by reducing operation costs by 32.67%, production energy consumption per unit by 17.5%, and product defect rate by 61.54%, effectively addressing the problems in the spinning sector. The simple type can shorten or eliminate steps in the spinning process, achieves spinning speed as high as 550 m/min, realizing the goal of efficiency-improvement and emission-reduction. The extensive type spinning develops a front-end raw material functional recycling to change waste into treasure, reducing energy and emission. The extensive type also develops medium-end carbon-nesting spinning to produce green functional yarns, and resultant manufacturing technology can be used for producing cooling, heat-insulting functional yarns for green terminal textiles.

Key words: carbon neutralization, carbon peaking, low-carbon spinning, energy-saving and emission-reduction, novel spinning technology

中图分类号: 

  • TS104.7

图1

低碳纺纱方案策略框架"

图2

国产化纺纱新方法"

表1

国产智能化纺纱关键装备与国外类比"

智能纺装备名称 100%国产智能纺纱 国外智能高端纺纱 对比结果
纺纱技术关键装备 经纬智能精梳机;万宝脉聚纺 立达全自动精梳机;负压紧密纺 国际先进水平;节能1/3
头并-粗纱物流系统 轨道式物流输送系统 自动导引运输车物流输送 国产效率更高
回花收付系统 全程无死角收付系统 部分收付、忽略全程 国产达到国际先进水平
智能管控系统 100%国产无死角和孤岛 与国内设备兼容差 国产兼容性优越

表2

全国产智能纺纱效果与国内外普通纺、智能纺效果的比较"

对比指标 100%国产智能纺纱技术与国内外技术的比较 国际高端
智能纺纱
测算方法 改造前的现代普通纺 改造后的智能纺 定量指标升降
生产效率 一线员工每小时万元产值提升幅度 锭速15 500 r/min,单产13.07 kg/(千锭·h) 锭速18 500 r/min,单产16.26 kg/(千锭·h) 提升24.40% 同等水平
运营成本 [(建设前运营成本-建成后运营成本)/建设前运营成本]×100% 万元产值运行成本3 931.16元 万元产值运行成本2 647.04元 降低32.67% 同等水平
产品升级周期 [(建设前研制周期-建成后研制周期)/建设前研制周期]×100% 10 d 6 d 缩短40% 同等水平
产品不良率 (建设前不良产品数/总数)×100%-(建设后不良产品数/总数)×100% 0.26% 0.1% 降低61.54% 同等水平
单位产值能耗 [(建设前单位产品实耗能源-建成后单位产品实耗能源)/建设前单位产品实耗能源]×100% 万元工业增加值综合能耗0.80 t标准煤 万元工业增加值综合能耗 0.66 t标准煤 降低17.50% 同等水平
产品质量工艺可追溯率 60% 100% 100.00% 同等水平
万锭用工 [(建设前万锭用工-建成后万锭用工)/ 建设前万锭用工]×100% 万锭用工53人 万锭用工14.8人 降低72.08% 同等水平

图3

简约型短流程高速的开放端纺纱技术特征及代表"

图4

简约型短流程中速握持端倍捻直络纺纱技术"

图5

长丝直接纺成大卷装纱线的超短流程纺纱技术"

图6

型膜丝化直接纺成大卷装纱线的超短流程纺纱技术"

图7

无纺-编织的超纺技术"

图8

循环回用纤维的高质化功能纺纱技术"

图9

短流程优质固碳纺纱技术"

[1] BHSTTHATTACHARYA S D, DAS A K. Alkali degumming of decorticated ramie[J]. Color Technology, 2006, 117:342-345.
doi: 10.1111/cte.2001.117.issue-6
[2] SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189.
doi: 10.1016/j.enpol.2008.08.016
[3] ABS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures, 2015, 69:31-49.
doi: 10.1016/j.futures.2015.03.003
[4] CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, et al. Scientists' warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 2019, 17(9): 569-586.
doi: 10.1038/s41579-019-0222-5
[5] TERÄVÄINEN T. Visions of energy futures[J]. Nature Energy, 2018, 3(11): 923-924.
doi: 10.1038/s41560-018-0279-9
[6] ZHOU Y J, KERKHOVEN E J, NIELSEN J. Barriers and opportunities in bio-based production of hydrocarbons[J]. Nature Energy, 2018, 3(11): 925-935.
doi: 10.1038/s41560-018-0197-x
[7] BURNS D A, AHERNE J, GAY D A, et al. Acid rain and its environmental effects: recent scientific advances[J]. Atmospheric Environment, 2016, 146:1-4.
doi: 10.1016/j.atmosenv.2016.10.019
[8] LIKENS G E, BORMANN F H. Acid rain: a serious regional environmental problem[J]. Science, 1974, 184(4142): 1176.
doi: 10.1126/science.184.4142.1176
[9] LIVINGSTON R A. Acid rain attack on outdoor sculpture in perspective[J]. Atmospheric Environment, 2016, 146:332-345.
doi: 10.1016/j.atmosenv.2016.08.029
[10] MERCER J H. West antarctic ice sheet and CO2 greenhouse effect: a threat of disaster[J]. Nature, 1978, 271(5643): 321-325.
doi: 10.1038/271321a0
[11] PARKER R W R, BLANCHARD J L, GARDNER C, et al. Fuel use and greenhouse gas emissions of world fisheries[J]. Nature Climate Change, 2018, 8(4): 333-337.
doi: 10.1038/s41558-018-0117-x
[12] VON B H, CURRAN M A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective[J]. Journal of Cleaner Production, 2007, 15(7): 607-619.
doi: 10.1016/j.jclepro.2006.03.002
[13] COX P M, HUNTINGFORD C, WILLIAMAON M S. Emergent constraint on equilibrium climate sensitivity from global temperature variability[J]. Nature, 2018, 553(7688): 319-322.
doi: 10.1038/nature25450
[14] FERNÁNDEZ-MARTINEZ M, SARDANS J, CHEVALLIER F, et al. Global trends in carbon sinks and their relationships with CO2 and temperature[J]. Nature Climate Change, 2019, 9(1): 73-79.
doi: 10.1038/s41558-018-0367-7
[15] ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change, 2018, 8(4): 325-332.
doi: 10.1038/s41558-018-0091-3
[16] 极端天气将更频繁,联合国发出“红色警报”[EB/OL].[2021-08-11]. https://xw.qq.com/cmsid/20210809A0AI8E00?f=newdc.
Extreme weather will be more frequent, with the United Nations issuing a "red alert"[EB/OL].[ 2021-08-11]. https://xw.qq.com/cmsid/20210809A0AI8E00?f=newdc.
[17] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7.
XI Jinping. Speech at the general debate of the 7-fifth UN General Assembly[J]. Bulletin of the State Council of the People's Republic of China, 2020(28): 5-7.
[18] 国务院关于落实《政府工作报告》重点工作分工的意见[J]. 中华人民共和国国务院公报, 2021(10): 14-28.
Opinions of the State Council on the implementation of the key division of work in the Government Work Report[J]. Bulletin of the State Council of the People's Republic of China, 2021(10): 14-28.
[19] 王学元. 纺纱工艺流程功能解析[J]. 纺织器材, 2017, 44(4):48-53;2017,44(5):53-60; 2017, 44(6): 59-62.
WANG Xueyuan. Analysis of the spinning process flow function[J]. Textile Accessories, 2017, 44(4):48-53;2017,44(5):53-60; 2017, 44(6): 59-62.
[20] 葛晓华, 苏旭东, 袁进, 等. 工业领域碳足迹研究进展[J]. 生态经济, 2013(5): 120-125.
GE Xiaohua, SU Xudong, YUAN Jin, et al. Progress in carbon footprinting research in industry[J]. Ecological Economy, 2013(5): 120-125.
[21] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48(1): 28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48(1): 28-33.
[22] 万由顺, 卫江, 田青, 等. 一种分类循环收付回花的全流程智能纺纱系统:201910441468.7[P]. 2019-07-16.
WAN Youshun, WEI Jiang, TIAN Qing, et al. A whole-process intelligent spinning system of sorting cycle collection and payment back of recycled fibers:201910441468.7[P]. 2019-07-16.
[23] 郝可可. 脉动集聚纺集聚机理与成纱质量分析[D]. 上海:东华大学, 2020:5-14.
HAO Keke. Analysis of pulse condensing mechanism and quality of yarn formation[D]. Shanghai: Donghua University, 2020: 5-14.
[24] 夏治刚. 湿热对纤维素纤维拉伸性能的影响及其在光洁成纱中的应用[D]. 上海:东华大学, 2012:57-86.
XIA Zhigang. Moisture and temperature influence on cellulose textile fibers' tensile properties and its application in smooth yarn production[D]. Shanghai: Donghua University, 2012: 57-86.
[25] XIA Zhigang, GUO Qinsheng, YE Wenxiang, et al. Comparative study of fiber trapping by filaments in conventional and diagonal sirofil systems[J]. Textile Research Journal, 2018, 88(14): 1581-1592.
doi: 10.1177/0040517517703606
[26] TAO Xiaoming, XU Bugao, WONG S K. Method and apparatus for manufacturing a singles ring yarn:US7096655[P].2004-06-02.
[27] YIN Rong, TAO Xiaoming, XU Bugao. Yarn and fabric properties in a modified ring spinning system considering the effect of the friction surface of the false-twister[J]. Textile Research Journal, 2020, 90(5/6): 572-580.
doi: 10.1177/0040517519873057
[28] 徐卫林, 夏治刚, 丁彩玲, 等. 高效短流程嵌入式复合纺纱技术原理解析[J]. 纺织学报, 2010, 31(6): 29-36.
XU Weilin, XIA Zhigang, DING Cailing, et al. Analyzing principle of high-efficiency and shortened-process embedding spinning technology[J]. Journal of Textile Research, 2010, 31(6): 29-36.
[29] XU Weilin, XIA Zhigang, WANG Xin, et al. Embeddable and locatable spinning[J]. Textile Research Journal, 2011, 81(3): 223-229.
doi: 10.1177/0040517510380780
[30] 卫江, 田青, 夏治刚, 等. 100%国产化全流程自动化纺纱车间构建与生产实践[J]. 纺织导报, 2021(6): 54-58.
WEI Jiang, TIAN Qing, XIA Zhigang, et al. Construction and production practice of 100% domestic full-process automatic spinning workshop[J]. China Textile Leader, 2021(6): 54-58.
[31] XIA Zhigang, XU Weilin. A review of ring staple yarn spinning method development and its trend[J]. Journal of Natural Fibers, 2013, 10(1): 62-81.
doi: 10.1080/15440478.2012.763218
[32] 夏治刚, 叶汶祥, 徐卫林. 短纤维纺纱技术的发展概述及关键特征解析[J]. 纺织学报, 2013, 34(6): 147-154.
XIA Zhigang, YE Wenxiang, XU Weilin. Review of staple yarn spinning technology and analysis of its key features[J]. Journal of Textile Research, 2013, 34(6): 147-154.
[33] AKANKWASA N T, LIN H, ZHANG Y, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2016.DOI: 10.1177/0040517516677230.
doi: 10.1177/0040517516677230
[34] MERATI A A, OKAMURA M. Effect of yarn draw-off angle on the yarn properties in friction spinning[J]. Textile Research Journal, 2005.DOI: 10.1177/0040517505059706.
doi: 10.1177/0040517505059706
[35] HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of traditional jet vortex spinning and self-twist jet vortex spinning on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016, 86:1750-1758.
doi: 10.1177/0040517515606359
[36] HEARLE J W S, LORD P R, SENTURK N. Fibre migration in open-end-spun yarns[J]. Journal Textile Institute, 1972, 63:605-617.
doi: 10.1080/00405007208630383
[37] ZHENG Shaoming, ZOU Zhuanyong, SHEN Wei, et al. A study of the fiber distribution in yarn cross section for vortex-spun yarn[J]. Textile Research Journal, 2012, 82(15): 1579-1586.
doi: 10.1177/0040517511431315
[38] SOE A K, TAKAHASHI M, NAKAJIMA M, et al. Structure and properties of MVS yarns in comparison with ring yarns and open-end rotor spun yarns[J]. Textile Research Journal, 2004, 74(9): 819-826.
doi: 10.1177/004051750407400911
[39] RAMESHKUMAR C, ANANDKUMAR P, SENTHILNATHAN P, et al. Comparative studies on ring rotor and vortex yarn knitted fabrics[J]. AUTEX Res J, 2008, 8:100-105.
[40] 夏治刚, 刘英, 万由顺, 等. 一种熔结式稳固耐磨纱的直接络筒握持纺纱方法:201910774979.0[P]. 2019-08-21.
XIA Zhigang, LIU Ying, WAN Youshun, et al. A directional cone-winding nipped spinning method of stable resistant yarn with melted coherence fibers:201910774979.0[P]. 2019-08-21.
[41] 彭浩凯. 一种多捻纺纱装置、多捻纺纱设备及纺纱方法:20201352358.6[P]. 2020-08-11.
PENG Haokai. Spinning device, equipment and method of multiple twisting of filament fibers:20201352358.6[P]. 2020-08-11.
[42] XIA Zhigang, LIU Xin, DING Cailing, et al. Ring composite spinning method based on film filamentization: US 10577727B2[P]. 2020-04-03.
[43] 夏治刚, 徐卫林, 郭沁生, 等. 一种型膜成丝的方法:201710329766.8 [P]. 2019-05-31.
XIA Zhigang, XU Weilin, GUO Qinsheng, et al. A method of film filamentization: 201710329766.8 [P]. 2019-05-31.
[44] 谢晓英, 宋富佳. 2015米兰国际纺织机械展览会预览:二[J]. 纺织导报, 2015, 10(4): 49-76.
XIE Xiaoying, SONG Fujia. Preview of Milan international textile machinery exhibition 2015:II[J]. China Textile Leader, 2015, 10(4): 49-76.
[45] 2015迈耶西创新研发出纺纱编织一体机[J]. 毛纺科技, 2016, 44(1): 59.
Meyersi innovatively developed an all-in-one spinning and weaving machine in 2015 [J]. Wool Textile Journal, 2016, 44(1): 59.
[46] 吴济宏, 朱慧, 何满堂, 等. 一种纤维网型针织物的制备方法:201810270979.2 [P]. 2018-07-17.
WU Jihong, ZHU Hui, HE Mantang, et al. A preparation method of fiber mesh knitting material:201810270979.2 [P]. 2018-07-17.
[47] LIU Hongtao, XU Weilin, LIU Xiuying, et al. Effects of superfine silk protein powders on mechanical properties of wet-spun polyurethane fibers[J]. Journal of Applied Polymer Science, 2009, 114:3428-3433.
doi: 10.1002/app.v114:6
[48] XU Weilin, CUI Weigang, LI Wenbin, et al. Development and characterizations of super-fine wool powder[J]. Powder Technology, 2004, 140:130-140.
[49] 徐卫林, 郭维琪, 李文斌. 一种用于加工有机纳米粉末的磨盘:02154128.0[P]. 2002-12-25.
XU Weilin, GUO Weiqi, LI Wenbin. A grinding plate used for processing organic nano powders:02154128.0[P]. 2002-12-25.
[50] YU Xichen, FAN Wei, AZWAR Elfina, et al. Twisting in improving processing of waste-derived yarn into high-performance reinforced composite[J]. Journal of Cleaner Production, 2021, 317:128446.
doi: 10.1016/j.jclepro.2021.128446
[51] YU Wen, LI Xiang, HE Jianxin, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 pmid: 33069016
[52] JIANG Guojun, ZHANG Junrui, JI Dongxiao, et al. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns[J]. Fibers and Polymers, 2017, 18(5): 987-992.
doi: 10.1007/s12221-017-1194-6
[53] YANG Yuchen, QUAN Zhenzhen, ZHANG Hongnan, et al. Investigation on the processability, structure and properties of micro-/nano-fiber composite yarns produced by trans-scale spinning[J]. Journal of Industrial Textiles, 2020.DOI: 10.1177/1528083720941177.
doi: 10.1177/1528083720941177
[54] 夏治刚, 曹根阳, 刘欣, 等. 一种纳微尺度增强纤维成纱的长丝环锭复合纺纱方法:201610837502.9 [P]. 2018-09-25.
XIA Zhigang, CAO Genyang, LIU Xin, et al. A composite ring spinning method of nano-scale fiber enhancing the micro-scale fiber bundles:201610837502.9[P]. 2018-09-25.
[55] 徐卫林, 夏治刚, 曹根阳, 等. 一种纳微尺度增强纤维成纱的赛络纺纱方法:201610847425.5 [P]. 2018-09-25.
XU Weilin, XIA Zhigang, CAO Genyang, et al. A siro-spinning method of nano-scale fiber enhancing the microscale fiber bundles:201610847425.5 [P]. 2018-09-25.
[56] 夏治刚, 付驰宇, 丁彩玲, 等. 一种超短难纺短纤维短流程成纱的方法:201810126455.6 [P]. 2021-05-07.
XIA Zhigang, FU Chiyu, DING Cailing, et al. A ultra short-process yarn-forming method of ultra short hard spun staple fibers:201810126455.6 [P]. 2021-05-07.
[57] 徐卫林, 夏治刚, 丁彩玲, 等. 一种超短难纺纤维短流程复合成纱的方法:201810126434.4 [P]. 2021-05-07.
XU Weilin, XIA Zhigang, DING Cailing, et al. A ultra short-process composite yarn-forming method of ultra short hard spun staple fibers:201810126434.4 [P]. 2021-05-07.
[58] 夏治刚, 丁彩玲, 刘欣, 等. 一种内置微粒材料的纱线成形方法:201810126447.1 [P]. 2019-12-03.
XIA Zhigang, DING Cailing, LIU Xin, et al. A yarn forming method by inner nesting micro-particle materials:201810126447.1 [P]. 2019-12-03.
[59] 徐卫林, 夏治刚, 刘欣, 等. 一种内置粉体材料的复合纱线成形方法:201810126461.1 [P]. 2019-11-05.
XU Weilin, XIA Zhigang, LIU Xin, et al. A composite yarn forming method by inner nesting powder materials:201810126461.1 [P]. 2019-11-05.
[60] ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021.DOI: 10.1126/science.abi5484.
doi: 10.1126/science.abi5484
[61] WANG Kai, FU Chiyu, WANG Rui, et al. High-resilience cotton base yarn for anti-wrinkle and durable heat-insulation fabric[J]. Composites Part B: Engineering, 2021, 212:108663.
doi: 10.1016/j.compositesb.2021.108663
[1] 唐政坤, 刘艳缤, 徐晨烨, 刘艳彪, 沈忱思, 李方, 王华平. 面向减污降碳目标的纺织工业环境治理发展趋势[J]. 纺织学报, 2022, 43(01): 131-140.
[2] 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112.
[3] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[4] 王晓锋, 朱晨, 袁阴. 基于供应链的纺织行业节能减排决策[J]. 纺织学报, 2019, 40(01): 166-174.
[5] 岳仕芳. 棉/粘弹力交织物的生物酶前处理工艺[J]. 纺织学报, 2016, 37(3): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .