纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 58-66.doi: 10.13475/j.fzxb.20210909310
夏治刚1,2,3, 徐傲1,2, 万由顺4, 卫江4, 张慧霞5, 唐建东5, 郑敏博5, 郭沁生6, 丁彩玲7, 杨圣明8, 徐卫林1,2()
XIA Zhigang1,2,3, XU Ao1,2, WAN Youshun4, WEI Jiang4, ZHANG Huixia5, TANG Jiandong5, ZHENG Minbo5, GUO Qinsheng6, DING Cailing7, YANG Shengming8, XU Weilin1,2()
摘要:
传统纺纱工序长而散、用工多,造成单产能耗高、产品一致性差、运营成本高等行业痛点问题;纱线原料的多元化使原料及成品回收难度大。为实现2030年碳达峰、2060年碳中和目标,提出了人-机-料-法-环的五位一体化碳中和纺纱的低碳生产策略,凝练并分析了集约型、简约型和延伸型低碳纺纱技术。分析结果表明:与传统纺纱相比,集约型智能纺技术运行成本降低32.67%,单位产品能耗降低17.5%、产品不良率降低61.54%,有效解决了纺纱行业的痛点问题,实现低碳高质纺纱;简约型高速纺纱技术能缩短或消除纺纱流程,纺纱速度高达550 m/min,实现了降低碳排放、提高效率的目标;低碳纺纱发展方向要向前后端延伸,对前端原料要多应用功能化循环利用技术、变废为宝技术、节能减排技术,在中端要发展固碳纺纱技术和循环利用技术,在终端研发绿色环保纺织品的制冷、隔热等功能纱制备技术。
中图分类号:
[1] |
BHSTTHATTACHARYA S D, DAS A K. Alkali degumming of decorticated ramie[J]. Color Technology, 2006, 117:342-345.
doi: 10.1111/cte.2001.117.issue-6 |
[2] |
SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189.
doi: 10.1016/j.enpol.2008.08.016 |
[3] |
ABS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures, 2015, 69:31-49.
doi: 10.1016/j.futures.2015.03.003 |
[4] |
CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, et al. Scientists' warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 2019, 17(9): 569-586.
doi: 10.1038/s41579-019-0222-5 |
[5] |
TERÄVÄINEN T. Visions of energy futures[J]. Nature Energy, 2018, 3(11): 923-924.
doi: 10.1038/s41560-018-0279-9 |
[6] |
ZHOU Y J, KERKHOVEN E J, NIELSEN J. Barriers and opportunities in bio-based production of hydrocarbons[J]. Nature Energy, 2018, 3(11): 925-935.
doi: 10.1038/s41560-018-0197-x |
[7] |
BURNS D A, AHERNE J, GAY D A, et al. Acid rain and its environmental effects: recent scientific advances[J]. Atmospheric Environment, 2016, 146:1-4.
doi: 10.1016/j.atmosenv.2016.10.019 |
[8] |
LIKENS G E, BORMANN F H. Acid rain: a serious regional environmental problem[J]. Science, 1974, 184(4142): 1176.
doi: 10.1126/science.184.4142.1176 |
[9] |
LIVINGSTON R A. Acid rain attack on outdoor sculpture in perspective[J]. Atmospheric Environment, 2016, 146:332-345.
doi: 10.1016/j.atmosenv.2016.08.029 |
[10] |
MERCER J H. West antarctic ice sheet and CO2 greenhouse effect: a threat of disaster[J]. Nature, 1978, 271(5643): 321-325.
doi: 10.1038/271321a0 |
[11] |
PARKER R W R, BLANCHARD J L, GARDNER C, et al. Fuel use and greenhouse gas emissions of world fisheries[J]. Nature Climate Change, 2018, 8(4): 333-337.
doi: 10.1038/s41558-018-0117-x |
[12] |
VON B H, CURRAN M A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective[J]. Journal of Cleaner Production, 2007, 15(7): 607-619.
doi: 10.1016/j.jclepro.2006.03.002 |
[13] |
COX P M, HUNTINGFORD C, WILLIAMAON M S. Emergent constraint on equilibrium climate sensitivity from global temperature variability[J]. Nature, 2018, 553(7688): 319-322.
doi: 10.1038/nature25450 |
[14] |
FERNÁNDEZ-MARTINEZ M, SARDANS J, CHEVALLIER F, et al. Global trends in carbon sinks and their relationships with CO2 and temperature[J]. Nature Climate Change, 2019, 9(1): 73-79.
doi: 10.1038/s41558-018-0367-7 |
[15] |
ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change, 2018, 8(4): 325-332.
doi: 10.1038/s41558-018-0091-3 |
[16] | 极端天气将更频繁,联合国发出“红色警报”[EB/OL].[2021-08-11]. https://xw.qq.com/cmsid/20210809A0AI8E00?f=newdc. |
Extreme weather will be more frequent, with the United Nations issuing a "red alert"[EB/OL].[ 2021-08-11]. https://xw.qq.com/cmsid/20210809A0AI8E00?f=newdc. | |
[17] | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7. |
XI Jinping. Speech at the general debate of the 7-fifth UN General Assembly[J]. Bulletin of the State Council of the People's Republic of China, 2020(28): 5-7. | |
[18] | 国务院关于落实《政府工作报告》重点工作分工的意见[J]. 中华人民共和国国务院公报, 2021(10): 14-28. |
Opinions of the State Council on the implementation of the key division of work in the Government Work Report[J]. Bulletin of the State Council of the People's Republic of China, 2021(10): 14-28. | |
[19] | 王学元. 纺纱工艺流程功能解析[J]. 纺织器材, 2017, 44(4):48-53;2017,44(5):53-60; 2017, 44(6): 59-62. |
WANG Xueyuan. Analysis of the spinning process flow function[J]. Textile Accessories, 2017, 44(4):48-53;2017,44(5):53-60; 2017, 44(6): 59-62. | |
[20] | 葛晓华, 苏旭东, 袁进, 等. 工业领域碳足迹研究进展[J]. 生态经济, 2013(5): 120-125. |
GE Xiaohua, SU Xudong, YUAN Jin, et al. Progress in carbon footprinting research in industry[J]. Ecological Economy, 2013(5): 120-125. | |
[21] | 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48(1): 28-33. |
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48(1): 28-33. | |
[22] | 万由顺, 卫江, 田青, 等. 一种分类循环收付回花的全流程智能纺纱系统:201910441468.7[P]. 2019-07-16. |
WAN Youshun, WEI Jiang, TIAN Qing, et al. A whole-process intelligent spinning system of sorting cycle collection and payment back of recycled fibers:201910441468.7[P]. 2019-07-16. | |
[23] | 郝可可. 脉动集聚纺集聚机理与成纱质量分析[D]. 上海:东华大学, 2020:5-14. |
HAO Keke. Analysis of pulse condensing mechanism and quality of yarn formation[D]. Shanghai: Donghua University, 2020: 5-14. | |
[24] | 夏治刚. 湿热对纤维素纤维拉伸性能的影响及其在光洁成纱中的应用[D]. 上海:东华大学, 2012:57-86. |
XIA Zhigang. Moisture and temperature influence on cellulose textile fibers' tensile properties and its application in smooth yarn production[D]. Shanghai: Donghua University, 2012: 57-86. | |
[25] |
XIA Zhigang, GUO Qinsheng, YE Wenxiang, et al. Comparative study of fiber trapping by filaments in conventional and diagonal sirofil systems[J]. Textile Research Journal, 2018, 88(14): 1581-1592.
doi: 10.1177/0040517517703606 |
[26] | TAO Xiaoming, XU Bugao, WONG S K. Method and apparatus for manufacturing a singles ring yarn:US7096655[P].2004-06-02. |
[27] |
YIN Rong, TAO Xiaoming, XU Bugao. Yarn and fabric properties in a modified ring spinning system considering the effect of the friction surface of the false-twister[J]. Textile Research Journal, 2020, 90(5/6): 572-580.
doi: 10.1177/0040517519873057 |
[28] | 徐卫林, 夏治刚, 丁彩玲, 等. 高效短流程嵌入式复合纺纱技术原理解析[J]. 纺织学报, 2010, 31(6): 29-36. |
XU Weilin, XIA Zhigang, DING Cailing, et al. Analyzing principle of high-efficiency and shortened-process embedding spinning technology[J]. Journal of Textile Research, 2010, 31(6): 29-36. | |
[29] |
XU Weilin, XIA Zhigang, WANG Xin, et al. Embeddable and locatable spinning[J]. Textile Research Journal, 2011, 81(3): 223-229.
doi: 10.1177/0040517510380780 |
[30] | 卫江, 田青, 夏治刚, 等. 100%国产化全流程自动化纺纱车间构建与生产实践[J]. 纺织导报, 2021(6): 54-58. |
WEI Jiang, TIAN Qing, XIA Zhigang, et al. Construction and production practice of 100% domestic full-process automatic spinning workshop[J]. China Textile Leader, 2021(6): 54-58. | |
[31] |
XIA Zhigang, XU Weilin. A review of ring staple yarn spinning method development and its trend[J]. Journal of Natural Fibers, 2013, 10(1): 62-81.
doi: 10.1080/15440478.2012.763218 |
[32] | 夏治刚, 叶汶祥, 徐卫林. 短纤维纺纱技术的发展概述及关键特征解析[J]. 纺织学报, 2013, 34(6): 147-154. |
XIA Zhigang, YE Wenxiang, XU Weilin. Review of staple yarn spinning technology and analysis of its key features[J]. Journal of Textile Research, 2013, 34(6): 147-154. | |
[33] |
AKANKWASA N T, LIN H, ZHANG Y, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2016.DOI: 10.1177/0040517516677230.
doi: 10.1177/0040517516677230 |
[34] |
MERATI A A, OKAMURA M. Effect of yarn draw-off angle on the yarn properties in friction spinning[J]. Textile Research Journal, 2005.DOI: 10.1177/0040517505059706.
doi: 10.1177/0040517505059706 |
[35] |
HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of traditional jet vortex spinning and self-twist jet vortex spinning on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016, 86:1750-1758.
doi: 10.1177/0040517515606359 |
[36] |
HEARLE J W S, LORD P R, SENTURK N. Fibre migration in open-end-spun yarns[J]. Journal Textile Institute, 1972, 63:605-617.
doi: 10.1080/00405007208630383 |
[37] |
ZHENG Shaoming, ZOU Zhuanyong, SHEN Wei, et al. A study of the fiber distribution in yarn cross section for vortex-spun yarn[J]. Textile Research Journal, 2012, 82(15): 1579-1586.
doi: 10.1177/0040517511431315 |
[38] |
SOE A K, TAKAHASHI M, NAKAJIMA M, et al. Structure and properties of MVS yarns in comparison with ring yarns and open-end rotor spun yarns[J]. Textile Research Journal, 2004, 74(9): 819-826.
doi: 10.1177/004051750407400911 |
[39] | RAMESHKUMAR C, ANANDKUMAR P, SENTHILNATHAN P, et al. Comparative studies on ring rotor and vortex yarn knitted fabrics[J]. AUTEX Res J, 2008, 8:100-105. |
[40] | 夏治刚, 刘英, 万由顺, 等. 一种熔结式稳固耐磨纱的直接络筒握持纺纱方法:201910774979.0[P]. 2019-08-21. |
XIA Zhigang, LIU Ying, WAN Youshun, et al. A directional cone-winding nipped spinning method of stable resistant yarn with melted coherence fibers:201910774979.0[P]. 2019-08-21. | |
[41] | 彭浩凯. 一种多捻纺纱装置、多捻纺纱设备及纺纱方法:20201352358.6[P]. 2020-08-11. |
PENG Haokai. Spinning device, equipment and method of multiple twisting of filament fibers:20201352358.6[P]. 2020-08-11. | |
[42] | XIA Zhigang, LIU Xin, DING Cailing, et al. Ring composite spinning method based on film filamentization: US 10577727B2[P]. 2020-04-03. |
[43] | 夏治刚, 徐卫林, 郭沁生, 等. 一种型膜成丝的方法:201710329766.8 [P]. 2019-05-31. |
XIA Zhigang, XU Weilin, GUO Qinsheng, et al. A method of film filamentization: 201710329766.8 [P]. 2019-05-31. | |
[44] | 谢晓英, 宋富佳. 2015米兰国际纺织机械展览会预览:二[J]. 纺织导报, 2015, 10(4): 49-76. |
XIE Xiaoying, SONG Fujia. Preview of Milan international textile machinery exhibition 2015:II[J]. China Textile Leader, 2015, 10(4): 49-76. | |
[45] | 2015迈耶西创新研发出纺纱编织一体机[J]. 毛纺科技, 2016, 44(1): 59. |
Meyersi innovatively developed an all-in-one spinning and weaving machine in 2015 [J]. Wool Textile Journal, 2016, 44(1): 59. | |
[46] | 吴济宏, 朱慧, 何满堂, 等. 一种纤维网型针织物的制备方法:201810270979.2 [P]. 2018-07-17. |
WU Jihong, ZHU Hui, HE Mantang, et al. A preparation method of fiber mesh knitting material:201810270979.2 [P]. 2018-07-17. | |
[47] |
LIU Hongtao, XU Weilin, LIU Xiuying, et al. Effects of superfine silk protein powders on mechanical properties of wet-spun polyurethane fibers[J]. Journal of Applied Polymer Science, 2009, 114:3428-3433.
doi: 10.1002/app.v114:6 |
[48] | XU Weilin, CUI Weigang, LI Wenbin, et al. Development and characterizations of super-fine wool powder[J]. Powder Technology, 2004, 140:130-140. |
[49] | 徐卫林, 郭维琪, 李文斌. 一种用于加工有机纳米粉末的磨盘:02154128.0[P]. 2002-12-25. |
XU Weilin, GUO Weiqi, LI Wenbin. A grinding plate used for processing organic nano powders:02154128.0[P]. 2002-12-25. | |
[50] |
YU Xichen, FAN Wei, AZWAR Elfina, et al. Twisting in improving processing of waste-derived yarn into high-performance reinforced composite[J]. Journal of Cleaner Production, 2021, 317:128446.
doi: 10.1016/j.jclepro.2021.128446 |
[51] |
YU Wen, LI Xiang, HE Jianxin, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 pmid: 33069016 |
[52] |
JIANG Guojun, ZHANG Junrui, JI Dongxiao, et al. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns[J]. Fibers and Polymers, 2017, 18(5): 987-992.
doi: 10.1007/s12221-017-1194-6 |
[53] |
YANG Yuchen, QUAN Zhenzhen, ZHANG Hongnan, et al. Investigation on the processability, structure and properties of micro-/nano-fiber composite yarns produced by trans-scale spinning[J]. Journal of Industrial Textiles, 2020.DOI: 10.1177/1528083720941177.
doi: 10.1177/1528083720941177 |
[54] | 夏治刚, 曹根阳, 刘欣, 等. 一种纳微尺度增强纤维成纱的长丝环锭复合纺纱方法:201610837502.9 [P]. 2018-09-25. |
XIA Zhigang, CAO Genyang, LIU Xin, et al. A composite ring spinning method of nano-scale fiber enhancing the micro-scale fiber bundles:201610837502.9[P]. 2018-09-25. | |
[55] | 徐卫林, 夏治刚, 曹根阳, 等. 一种纳微尺度增强纤维成纱的赛络纺纱方法:201610847425.5 [P]. 2018-09-25. |
XU Weilin, XIA Zhigang, CAO Genyang, et al. A siro-spinning method of nano-scale fiber enhancing the microscale fiber bundles:201610847425.5 [P]. 2018-09-25. | |
[56] | 夏治刚, 付驰宇, 丁彩玲, 等. 一种超短难纺短纤维短流程成纱的方法:201810126455.6 [P]. 2021-05-07. |
XIA Zhigang, FU Chiyu, DING Cailing, et al. A ultra short-process yarn-forming method of ultra short hard spun staple fibers:201810126455.6 [P]. 2021-05-07. | |
[57] | 徐卫林, 夏治刚, 丁彩玲, 等. 一种超短难纺纤维短流程复合成纱的方法:201810126434.4 [P]. 2021-05-07. |
XU Weilin, XIA Zhigang, DING Cailing, et al. A ultra short-process composite yarn-forming method of ultra short hard spun staple fibers:201810126434.4 [P]. 2021-05-07. | |
[58] | 夏治刚, 丁彩玲, 刘欣, 等. 一种内置微粒材料的纱线成形方法:201810126447.1 [P]. 2019-12-03. |
XIA Zhigang, DING Cailing, LIU Xin, et al. A yarn forming method by inner nesting micro-particle materials:201810126447.1 [P]. 2019-12-03. | |
[59] | 徐卫林, 夏治刚, 刘欣, 等. 一种内置粉体材料的复合纱线成形方法:201810126461.1 [P]. 2019-11-05. |
XU Weilin, XIA Zhigang, LIU Xin, et al. A composite yarn forming method by inner nesting powder materials:201810126461.1 [P]. 2019-11-05. | |
[60] |
ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021.DOI: 10.1126/science.abi5484.
doi: 10.1126/science.abi5484 |
[61] |
WANG Kai, FU Chiyu, WANG Rui, et al. High-resilience cotton base yarn for anti-wrinkle and durable heat-insulation fabric[J]. Composites Part B: Engineering, 2021, 212:108663.
doi: 10.1016/j.compositesb.2021.108663 |
[1] | 唐政坤, 刘艳缤, 徐晨烨, 刘艳彪, 沈忱思, 李方, 王华平. 面向减污降碳目标的纺织工业环境治理发展趋势[J]. 纺织学报, 2022, 43(01): 131-140. |
[2] | 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112. |
[3] | 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121. |
[4] | 王晓锋, 朱晨, 袁阴. 基于供应链的纺织行业节能减排决策[J]. 纺织学报, 2019, 40(01): 166-174. |
[5] | 岳仕芳. 棉/粘弹力交织物的生物酶前处理工艺[J]. 纺织学报, 2016, 37(3): 92-97. |
|