纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 43-48.doi: 10.13475/j.fzxb.20210904506

• 纤维材料 • 上一篇    下一篇

阻燃纤维素气凝胶研究进展

方寅春1,2(), 孙卫昊1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽省纺织行业科技公共服务平台, 安徽 芜湖 241000
  • 收稿日期:2021-09-13 修回日期:2021-11-04 出版日期:2022-01-15 发布日期:2022-01-28
  • 作者简介:方寅春(1986—),男,副教授,博士。主要研究方向为纺织品功能整理。E-mail: fangyinchun86@163.com
  • 基金资助:
    安徽省自然科学基金项目(1908085QE225);安徽工程大学中青年拔尖人才项目(校人字[2021]14号)

Research progress in flame retardant cellulose aerogel

FANG Yinchun1,2(), SUN Weihao1   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Anhui Textile Industry Science and Technology Public Service Platform, Wuhu, Anhui 241000, China
  • Received:2021-09-13 Revised:2021-11-04 Published:2022-01-15 Online:2022-01-28

摘要:

为提高纤维素气凝胶的阻燃性,拓宽其应用领域,首先介绍了纤维素气凝胶的分类及其制备方法;然后综述了当前应用较为广泛的无机阻燃剂、有机阻燃剂和有机/无机复合阻燃剂等阻燃改性纤维素气凝胶的研究进展,并对比分析了各类阻燃剂的优缺点。其中,有机/无机复合阻燃剂兼具无机和有机阻燃剂的优点,表现出高效的阻燃效率,但也存在与纤维素基体相容性差,制备工艺复杂等问题。最后,展望了阻燃纤维素气凝胶的未来发展趋势,指出绿色、环保、高效,且具有良好相容性的生物基阻燃剂将成为纤维素气凝胶阻燃今后重要的研究方向。

关键词: 纤维素, 气凝胶, 易燃性, 阻燃改性, 阻燃剂, 有机/无机复合阻燃剂

Abstract:

In order to improve the flame retardancy of cellulose aerogel and broaden its application field, the classification and preparation of cellulose aerogel are introduced. The research progress in inorganic flame retardants, organic flame retardants and organic/inorganic composite flame retardants were reviewed. The advantages and disadvantages of all types of flame retardant cellulose aerogels were compared and analyzed, among which, organic/inorganic composite flame retardants have the advantages of both of two single flame retardants, showing high flame retardant efficiency, though there are also poor compatibility and complex preparation process problems. The future development trend of cellulose aerogel flame retardant research was prospected, and it was pointed out that the bio-based flame retardant with green, environmental protection, high efficiency and good compatibility would become the main research direction of cellulose aerogel flame retardant in the future.

Key words: cellulose, aerogel, flammability, flame retardant modification, flame retardant, organic/inorganic composite flame retardant

中图分类号: 

  • TS195.592

表1

阻燃纤维素气凝胶用各类阻燃剂的优缺点"

阻燃剂类型 优点 缺点
无机阻燃剂 安全无毒、热稳定性好、价格便宜 添加量大、相容性差、单一阻燃效果不佳
有机阻燃剂 相容性好、阻燃效率高 产生有毒气体、污染环境
有机/无机阻燃剂 阻燃效率高 相容性差、制备工艺复杂
[1] 段玉洁, 梁程耀, 朱浩彤, 等. 纤维素气凝胶的制备及应用[J]. 塑料科技, 2021, 49(5): 93-98.
DUAN Yujie, LIANG Chengyao, ZHU Haotong, et al. Preparation and application of cellulose aerogel[J]. Plastics Science and Technology, 2021, 49(5): 93-98.
[2] 王猛, 唐丽, 高莉, 等. 纤维素/聚乙烯醇复合气凝胶制备及其性能研究[J]. 林产化学与工业, 2021, 41(3): 95-102.
WANG Meng, TANG Li, GAO Li, et al. Preparation and properties of cellulose/PVA composite aerogels[J]. Chemistry and Industry of Forest Products, 2021, 41(3): 95-102.
[3] 段一凡, 张光磊, 史新月, 等. 纤维素气凝胶的制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1): 36-43.
DUAN Yifan, ZHANG Guanglei, SHI Xinyue, et al. Research progress in preparation and application of cellulose aerogels[J]. Journal of Ceramics, 2021, 42(1): 36-43.
[4] 夏成, 董可海, 赖帅光, 等. 气凝胶复合材料的制备改性及应用研究进展[J]. 舰船电子工程, 2020, 40(6): 1-4, 17.
XIA Cheng, DONG Kehai, LAI Shuaiguang, et al. Research progress on preparation modification and application of aerogel composites[J]. Ship Electronic Engineering, 2020, 40(6): 1-4, 17.
[5] 韩健健, 胡勇杰, 刘谷. 服装用气凝胶材料的贴合结构设计[J]. 染整技术, 2021, 43(6): 34-37.
HAN Jianjian, HU Yongjie, LIU Gu. Fitting structure design of aerogel material for clothing[J]. Textile Dyeing and Finishing Journal, 2021, 43(6): 34-37.
[6] 张鑫, 崔升, 唐祥龙, 等. 纤维素基气凝胶材料及其应用研究进展[J]. 中国材料进展, 2017, 36(7): 512-520.
ZHANG Xin, CUI Sheng, TANG Xianglong, et al. Application research progress of cellulose-based aerogels[J]. Materials China, 2017, 36(7): 512-520.
[7] LONG L Y, WENG Y X, WANG Y Z. Cellulose aerogels: synjournal, applications, and prospects[J]. Polymers, 2018, 10(6): 623.
doi: 10.3390/polym10060623
[8] 党力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(9): 1-8.
DANG Li, LÜ Zhihui, Research progress on inorganic flame retardants[J]. China Plastics, 2018, 32(9): 1-8.
[9] HAN Y, ZHANG X, WU X, et al. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures.[J] ACS Sustainable Chemistry & Engineering, 2015, 3(8): 1853-1859.
[10] HE C, HUANG J, LI S, et al. Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 927-936.
[11] YUAN B, ZHANG J M, YU J, et al. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels[J]. Science China(Chemistry), 2016, 59(10): 1335-1341.
[12] LUO X L, SHEN J Y, MA Y N, et al. Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation[J]. Carbohydrate Polymers, 2020, 230:115623.
doi: 10.1016/j.carbpol.2019.115623
[13] 鲁祎辰, 杨伟. 羧甲基纤维素/锌铝层状双氢氧化物气凝胶的制备与性能[J]. 安徽化工, 2017, 43(6): 72-74.
LU Yichen, YANG Wei. Preparation and characteristics of carboxymethyl cellulose/ZnAl-layered double hydroxide composite aerogels[J]. Anhui Chemical Industry, 2017, 43(6): 72-74.
[14] HU W B, LU L B, LI Z Y, et al. A facile slow-gel method for bulk Al-doped carboxymethyl cellulose aerogels with excellent flame retardancy[J]. Carbohydrate Polymers, 2019, 207:352-361.
doi: 10.1016/j.carbpol.2018.11.089
[15] YANG L, MUKHOPADHYAY A, JIAO Y, et al. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2[J]. Nanoscale, 2017, 9(32): 11452.
doi: 10.1039/C7NR02243C
[16] 罗静. TiO2/纤维素气凝胶复合多功能保温材料的制备与性能研究[D]. 昆明:昆明理工大学, 2019: 83-88.
LUO Jing. Preparation and properties of TiO2/cellulose aerogel composite multifunctional insulation material[D]. Kunming :Kunming University of Science and Technology, 2019:83-88.
[17] YUAN B, ZHANG J M, MI Q Y, et al. Transparent cellulose-silica composite aerogels with excellent flame retardancy via in situ sol-gel process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5:11117-11123.
[18] 党丹旸, 崔灵燕, 王亮, 等. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(2): 1-6.
DANG Danyang, CUI Lingyan, WANG Liang, et al. Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels[J]. Journal of Textile Research, 2020, 41(2): 1-6.
doi: 10.1177/004051757104100101
[19] DONIUS A E, LIU A, BERGLUND L A, et al. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37:88-99.
doi: 10.1016/j.jmbbm.2014.05.012
[20] GUPTA P, VERMA C, MAJI P K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers[J]. The Journal of Supercritical Fluids, 2019, 152:104537.
doi: 10.1016/j.supflu.2019.05.005
[21] WANG L, SANCHEZ-SOTO M. Green bio-based aerogels prepared from recycled cellulose fiber suspensions[J]. RSC Advances, 2015, 5(40): 31384-31391.
doi: 10.1039/C5RA02981C
[22] HUANG Y J, ZHOU T, HE S, et al. Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus[J]. Applied Surface Science, 2019, 497:143775.
doi: 10.1016/j.apsusc.2019.143775
[23] GUO W W, WANG X, ZHANG P, et al. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance[J]. Carbohydrate Polymers, 2018, 195:71-78.
doi: 10.1016/j.carbpol.2018.04.063
[24] DU X, QIU J, DENG S, et al. Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency[J]. Journal of Materials Chemistry A, 2020, 8(28): 14126-14134.
doi: 10.1039/D0TA05078D
[25] WICKLEIN B, KOCJAN D, CAROSIO F, et al. Tuning the nanocellulose-borate interaction to achieve highly flame retardant hybrid materials[J]. Chemistry of Materials, 2016, 28(7): 1985-1989.
doi: 10.1021/acs.chemmater.6b00564
[26] 陈艳果, 李志伟, 李小红, 等. 纤维素/氧化石墨烯复合气凝胶的制备及其阻燃性能研究[J]. 中国塑料, 2019, 33(1): 38-44.
CHEN Yanguo, LI Zhiwei, LI Xiaohong, et al. Preparation and flame-retardant performance of cellulose/graphene oxide composite aerogels[J]. China Plastics, 2019, 33(1): 38-44.
[27] 宁登文. 海鞘纳米纤维素气凝胶的制备及其性能研究[D]. 福州:福建农林大学, 2020:66-71.
NING Dengwen. Preparation and properties of tunicate nanocellulose aerogels[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020:66-71.
[28] PINTO S C, GONCALVES G, SANDOVAL S, et al. Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability[J]. Carbohydrate Polymers, 2020, 230:115598.
doi: 10.1016/j.carbpol.2019.115598
[29] SHAHZADI K, GE X, SUN Y, et al. Fire retardant cellulose aerogel with improved strength and hydrophobic surface by one-pot method[J]. Journal of Applied Polymer Science, 2021, 138(16): 50224.
doi: 10.1002/app.v138.16
[30] GUO L M, CHEN Z L, LYU S Y, et al. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy[J]. Carbohydrate Polymers, 2018, 179:333-340.
doi: 10.1016/j.carbpol.2017.09.084
[31] 郭丽敏. 增强阻燃型纳米纤维素基气凝胶研究[D]. 北京:中国林业科学研究院, 2018:116-117.
GUO Limin. Study on reinforcing flame retardant cellulose nanofibril based aerogels[D]. Beijing:Chinese Academy of Forestry, 2018:116-117.
[32] ZHOU Z H, YANG Y B, HAN Y Y, et al. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites[J]. Carbohydrate Polymers, 2017, 177:241-248.
doi: 10.1016/j.carbpol.2017.08.136
[33] JIANG F, HSIEH Y L. Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2825-2834.
[34] KAYA M. Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid.[J] Journal of Applied Polymer Science, 2017, 134(38): 45315-45325.
doi: 10.1002/app.45315
[35] 崔灵燕. 隔热阻燃纳米纤维素/粘土气凝胶的制备与改性[D]. 天津:天津工业大学, 2019:30-34.
CUI Lingyan. Preparation and modification of heat insulation and flame retardant nanocellulose/clay aerogel[D]. Tianjin:Tiangong University, 2019: 30-34.
[36] MEDINA L L, CARSIO F, BERGLUND L A. Recyclable nanocomposite foams of Poly(vinyl alcohol), clay and cellulose nanofibrils-mechanical properties and flame retardancy[J]. Composites Science and Technology, 2019, 182:107762.
doi: 10.1016/j.compscitech.2019.107762
[37] KOKLUKAYA O, CARSIO F, WAGBERG L. Superior flame-resistant cellulose nanofibril aerogels modified with hybrid layer-by-layer coatings[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29082-29092.
[38] LI Y Z, GRISHKEWICH N, LIU L L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils[J]. Chemical Engineering Journal, 2019, 366:531-538.
doi: 10.1016/j.cej.2019.02.111
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[3] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[4] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[5] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[6] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[7] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[8] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[9] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[10] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[11] 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77.
[12] 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202.
[13] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[14] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138.
[15] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[5] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[10] 林红;陈宇岳;任煜;仲志锋;王红卫. 经等离子体处理的蚕丝纤维结构与性能[J]. 纺织学报, 2004, 25(03): 9 -10 .