纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 53-60.doi: 10.13475/j.fzxb.20211101808

• 纤维材料 • 上一篇    下一篇

纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能

魏娜娜, 刘碟, 马政, 焦晨璐()   

  1. 安徽农业大学 轻纺工程与艺术学院, 安徽 合肥 230036
  • 收稿日期:2021-11-03 修回日期:2021-11-22 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 焦晨璐
  • 作者简介:魏娜娜(1996—),女,硕士生。主要研究方向为纤维素基功能材料的制备及应用。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51803004)

Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method

WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu()   

  1. College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
  • Received:2021-11-03 Revised:2021-11-22 Published:2022-02-15 Online:2022-03-15
  • Contact: JIAO Chenlu

摘要:

为开发一种高效可再生的磁性生物质基吸附剂,以微晶纤维素(MCC)和壳聚糖(CS)为凝胶网络框架、纳米Fe3O4为掺杂剂,通过悬浮液滴和冻融结合法制备MCC/CS磁性气凝胶。借助扫描电子显微镜、傅里叶红外光谱、X射线衍射等表征其微观形貌及化学结构,并探讨了对染料刚果红的去除效果。结果表明:在加入1.0 g纳米Fe3O4时,MCC/CS磁性气凝胶呈现片层堆积的网络多孔结构,纳米Fe3O4分散均匀,气凝胶磁响应性能良好;当pH=5.0, 染料初始质量浓度为400 mg/L,MCC/CS磁性气凝胶质量浓度为0.5 g/L时,吸附效果最佳,吸附过程遵循准二级动力学方程和Langmuir等温模型,最大单分子层吸附容量为304 mg/g;经过5次循环后,对刚果红的吸附量仍能保持86.5%,表明MCC/CS磁性气凝胶可作为一种高效可再生的生物质基吸附剂用于印染废水处理。

关键词: 微晶纤维素, 壳聚糖, 冻融法, 磁性气凝胶, 刚果红, 吸附性能, 印染废水处理

Abstract:

In order to develop an efficient and renewable magnetic biomass-based adsorbent, microcrystalline cellulose (MCC)/chitosan (CS) magnetic aerogel was synthesized via a combination method of floating droplet and freeze-thawing, in which MCC and CS worked as the network frameworks, and Fe3O4 nanoparticles endowed the magnetic property. The morphology and chemistry performance of MCC/CS magnetic aerogel were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction, and its removal performance for Congo Red was discussed. The results showed that when 1.0 g Fe3O4 nanoparticles was incorporated, MCC/CS magnetic aerogel present a porous network structure with lamellar accumulation and good magnetic response with Fe3O4 nanoparticles evenly distributed on the lamellar frames. The optimal adsorption conditions for Congo Red were found to be pH 5.0, dye initial concentration 400 mg/L and MCC/CS magnetic aerogel dosage 0.5 g/L. The adsorption process followed the pseudo-second order kinetics equation and Langmuir isotherm model, and the maximum monolayer adsorption capacity of MCC/CS magnetic aerogel for Congo Red was estimated to be 304 mg/g. The regeneration study demonstrated that the adsorption capacity retained about 86.5% of its initial level at the 5th sequential regeneration cycle, indicating that MCC/CS magnetic aerogel can be used as a high-efficient and renewable biomass-based adsorbent for dye wastewater treatment.

Key words: microcrystalline cellulose, chitosan, freeze-thawing method, magnetic aerogel, Congo Red, adsorption performance, printing and dyeing wastewater treatment

中图分类号: 

  • TS102.2

图1

MCC/CS磁性气凝胶的合成及其去除CR的示意图"

图2

不同Fe3O4含量的MCC/CS磁性气凝胶的SEM照片"

图3

MCC/CS磁性气凝胶及其组分的红外光谱图"

图4

MCC、CS、Fe3O4和MCC/CS磁性气凝胶的XRD图"

图5

MCC、CS、Fe3O4和MCC/CS磁性气凝胶的TG-DTG曲线"

图6

MCC/CS磁性气凝胶的磁化曲线"

图7

时间和pH值对MCC/CS磁性气凝胶吸附CR性能的影响"

图8

染料初始质量浓度和吸附剂质量浓度对MCC/CS磁性气凝胶吸附CR性能的影响"

图9

MCC/CS磁性气凝胶对CR的动力学拟合曲线"

表1

MCC/CS磁性气凝胶吸附CR的动力学参数"

吸附量/
(mg·g-1)
准一级动力学模型 准二级动力学模型
Q1e/(mg·g-1) k1/min-1 R2 Q2e/(mg·g-1) k2/(g·mg-1·min-1) R2
222 244.7 0.02 0.987 0 333.3 6.4×10-5 0.991 3

图10

MCC/CS磁性气凝胶对CR的吸附等温线拟合"

表2

MCC/CS磁性气凝胶吸附CR的等温线模型参数"

Langmuir Freundlich
Qm/
(mg·g-1)
kL/
(L·mg-1)
R2 kF/
(L·mg-1)
n R2
304 0.006 3 0.993 8 10.8 2.0 0.943 5

图11

MCC/CS磁性气凝胶的再生性"

[1] 汤晓欢, 毛勇, 靳菁, 等. 吸附剂处理印染废水最新应用研究进展[J]. 江西农业学报, 2013, 25(7): 116-119.
TANG Xiaohuan, MAO Yong, JIN Jing, et al. Latest research advance in dye wastewater treatment with adsorbent[J]. Acta Agriculturae Jiangxi, 2013, 25(7): 116-119.
[2] LIU Z, WANG H, LIU C, et al. Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions[J]. Chem Commun (Camb), 2012, 48(59), 7350-7352.
doi: 10.1039/c2cc17795a
[3] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019, 40(10): 20-25.
[4] WAN N, TEONG L, HANAFIAH M. Adsorption of dyes and heavy metal ions by chitosan composites: a review[J]. Carbohydrate Polymers, 2011, 83(4): 1446-1456.
[5] TAN C, FUNG B M, NEWMAN J K, et al. Organic aerogels with very high impact strength[J]. Advanced Materials, 2001, 13(9): 644-646.
doi: 10.1002/1521-4095(200105)13:9<>1.0.CO;2-3
[6] 胡静, 张开威, 李冉冉, 等. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(2): 47-59.
HU Jing, ZHANG Kaiwei, LI Ranran, et al. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites[J]. Journal of Textile Research, 2021, 42(2): 47-59.
[7] PENG H, WU J, WANG Y, et al. A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation[J]. Applied Physics A, 2016, 122:516.
doi: 10.1007/s00339-016-0049-0
[8] PENG S, MENG H, OUYANG Y, et al. Nanoporous magnetic cellulose-chitosan composite microspheres: preparation, characterization, and application for Cu(Ⅱ) adsorption[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2106-2113.
doi: 10.1021/ie402855t
[9] LUO X, ZHANG L. Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities[J]. Biomacromolecules, 2010, 11:2896-2903.
doi: 10.1021/bm100642y
[10] JIAO C, TAO J, XIONG J, et al. In situ synjournal of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater[J]. Cellulose, 2017, 24(6): 2591-2604.
doi: 10.1007/s10570-017-1271-4
[11] VIEIRA A P, SANTANA S A, BEZERRA C W, et al. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut meso-carp[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1272-1278.
doi: 10.1016/j.jhazmat.2008.12.043
[12] ALDEGS Y, ELBARGHOUTHI M, ELSHEIKH A, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes and Pigments, 2008, 77(1): 16-23.
doi: 10.1016/j.dyepig.2007.03.001
[13] ZHANG Y, XU L, ZHAO L, et al. Radiation synjournal and Cr(VI) removal of cellulose microsphere adsor-bent[J]. Carbohydrate Polymers, 2012, 88(3): 931-938.
doi: 10.1016/j.carbpol.2012.01.040
[14] CHEN H, WAGEH S, AL-GHAMDI A A, et al. Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo Red[J]. Journal of Colloid and Interface Science, 2019, 537:736-745.
doi: 10.1016/j.jcis.2018.11.045
[15] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(2): 148-155.
HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes[J]. Journal of Textile Research, 2021, 42(2): 148-155.
[1] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
[2] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[3] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[4] 周慧玲, 朱俐莎, 吴雄英, 丁雪梅. 电雾化处理对羊毛织物抗起毛起球性能的影响[J]. 纺织学报, 2021, 42(10): 120-125.
[5] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[6] 田利强, 梁敏, 龙康, 陈秀清. 膨胀石墨负载纳米铁的制备及其对水中Cr(Ⅵ)及染料的去除[J]. 纺织学报, 2021, 42(06): 133-139.
[7] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[8] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[9] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[10] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[11] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[12] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[13] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[14] 郑宏飞, 汪瑞琪, 汪庆, 朱莹, 许云辉. 氧化壳聚糖改性抗菌蚕丝织物的制备及其性能[J]. 纺织学报, 2020, 41(05): 121-128.
[15] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(VI)和Pb(II)的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[7] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[8] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187 -194 .
[9] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .
[10] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75 -83 .