纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 61-68.doi: 10.13475/j.fzxb.20211100908

• 纤维材料 • 上一篇    下一篇

高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能

林美霞1,2, 王嘉雯1, 肖爽1,2, 王晓云1, 刘皓1,2, 何崟1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 智能可穿戴电子纺织品研究所, 天津 300387
  • 收稿日期:2021-11-02 修回日期:2021-12-02 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 何崟
  • 作者简介:林美霞(1996—),女,硕士生。主要研究方向为智能可穿戴纺织品。
  • 基金资助:
    中国博士后基金项目(2021M691699);国家自然科学基金项目(51473122);天津市自然科学基金项目(18JCYBJC18500)

Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor

LIN Meixia1,2, WANG Jiawen1, XIAO Shuang1,2, WANG Xiaoyun1, LIU Hao1,2, HE Yin1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China
  • Received:2021-11-02 Revised:2021-12-02 Published:2022-02-15 Online:2022-03-15
  • Contact: HE Yin

摘要:

为获得灵敏度高、响应范围广和环境友好的柔性力学传感器,以巴尔杉木为基材,采用自上而下的炭化木材技术,制备了聚氨酯/炭化木气凝胶复合导电材料,并利用聚氨酯浸泡处理方法提高炭化材料的压缩性和回弹性。使用扫描电子显微镜等仪器表征了炭化前后木气凝胶的表观结构、热稳定性、力电学性能及其柔性压力传感器的传感性能。结果表明,炭化木气凝胶具有独特的三维拱形层状结构,孔隙率达55.73%,且具有较高的热稳定性和可压缩性,其中质量分数为4%的聚氨酯/炭化木气凝胶具有良好的传感性能,在1~60 kPa的宽检测限下灵敏度达到61.02 kPa-1,迟滞率低于4.87%,可重复性达10 000次循环。以该气凝胶为敏感材料构建的柔性压力传感器可应用于人体生理信号及运动行为的监测。

关键词: 生物基炭化材料, 柔性压力传感器, 炭化木气凝胶, 热塑性聚氨酯, 多孔材料

Abstract:

In order to obtain flexible mechanical sensors with high sensitivity, wide response range and environment-friendliness, the top-down carbonized wood technology was adopted to prepare polyurethane/carbonized wood aerogel composite conductive materials, with balsa fir as the base material. The compression and resilience of the carbonized materials were improved by soaking the materials in polyurethane. Scanning Electronic microscopy and other instruments were used to characterize the apparent structure, thermal stability, mechanical and electrical properties of wood aerogels before and after carbonization, as well as the sensing properties of flexible pressure sensors. The results show that the carbonized wood aerogel has a unique three-dimensional arched layer structure with a porosity of 55.73% and high thermal stability and compressibility. The 4% polyurethane/wood carbide aerogels have demonstrated good sensing properties, with the sensitivity being 61.02 kPa-1, the hysteresis less than 4.87%, and the repeatability 10 000 cycles under the wide detection limit of 1-60 kPa. The flexible pressure sensor based on the aerogel can be used to monitor physiological signals and human movement behavior.

Key words: bio-based carbonized material, flexible pressure sensor, carbonized wood aerogel, thermoplastic polyurethane, porous material

中图分类号: 

  • TP212.2

图1

聚氨酯/炭化木气凝胶柔性压力传感器的制备方法示意图"

图2

不同阶段样品的SEM照片"

图3

聚氨酯/炭化木气凝胶骨架与孔隙结构"

图4

炭化前后气凝胶的TGA曲线"

表1

不同材料的压缩性能"

压缩材料 压缩前
高度/cm
压缩后
高度/cm
压缩应
变/%
天然木块 1.20 0.879 26.7
聚氨酯/炭化
木气凝胶
1.00 0.122 87.8

图5

炭化木气凝胶在不同聚氨酯浓度下的应力-应变曲线"

图6

2%、4%、6%聚氨酯/炭化木气凝胶的相对电阻变化率"

图7

2%、4%、6%聚氨酯/炭化木气凝胶的负载-卸载循环相对电阻变化率"

图8

4%聚氨酯/炭化木气凝胶的重复性"

图9

柔性压力传感器的人体生理信号监测应用"

图10

柔性压力传感器的人体运动信号监测应用"

[1] ZHANG Y, HAN F, HU Y G, et al. Flexible and highly sensitive pressure sensors with surface discrete microdomes made from self-assembled polymer microspheres array[J]. Macromolecular Chemistry and Physics, 2020, 221(11): 2000073-2000081.
doi: 10.1002/macp.v221.11
[2] KARNAUSHENKO D, KANG T, BANDARI V K, et al. 3D self assembled microelectronic devices: concepts, materials, applications[J]. Advanced Materials, 2019, 1902994:1-30.
[3] 杨楠. 用于柔性电子材料的智能导电织物性能研究[D]. 上海:东华大学, 2011: 14-20.
YANG Nan. Research on the performance of intelligent conductive fabric for special electronic materials[D]. Shanghai: Donghua University, 2011:14-20.
[4] 王俊璞. 柔性导电纤维/织物应变传感行为与机理研究[D]. 西安:西北工业大学, 2014: 7-15.
WANG Junpu. Research on the strain sensing behavior and mechanism of flexible conductive fiber/fabric[D]. Xi'an: Northwestern Polytechnical University, 2014: 7-15.
[5] WANG C, XIA K, WANG H, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials, 2019, 31(9): 1-37.
[6] GUAN H, MENG J, CHENG Z, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46357-46365.
[7] GAO N, ZHANG X, LIAO S, et al. Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor[J]. ACS Macro Letters, 2016, 5(7): 823-827.
doi: 10.1021/acsmacrolett.6b00338
[8] LI J, ORREGO S, PAN J, et al. Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing[J]. Nanoscale, 2019, 11(6): 2779-2786.
doi: 10.1039/C8NR09959F
[9] KANG D, PIKHITSA P V, CHOI Y W, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature, 2014, 516(7530): 222-226.
doi: 10.1038/nature14002
[10] QIU Z, WAN Y, ZHOU W, et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1-9.
[11] 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10): 88-98.
CHEN Yuan, HAN Yanming, FAN Dongbin, et al. Research progress of biomass cellulose-based carbon aerogel materials[J]. Forestry Science, 2019, 55(10): 88-98.
[12] WANG K, LIU X, TAN Y, et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation[J]. Chemical Engineering Journal, 2019, 371:769-780.
doi: 10.1016/j.cej.2019.04.108
[13] ZHANG Q, CHEN C, CHEN W, et al. Nanocellulose-enabled, all-nanofiber, high-performance supercapa-citor[J]. ACS Applied Materials & Interfaces, 2019(1): 5919-5927.
[14] CHEN C, SONG J, ZHU S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge[J]. Chem, 2018, 4(3): 544-554.
doi: 10.1016/j.chempr.2017.12.028
[15] WANG M, LI R N, CHEN G X, et al. Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14313-14321.
[1] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[2] 陈足娇, 张睿, 卓雯雯, 张龙琳, 周莉. 可穿戴足底压力监测系统研究进展[J]. 纺织学报, 2021, 42(09): 31-38.
[3] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[4] 白赫, 钱晓明, 范金土, 钱幺, 刘永胜, 王小波. 纤维质多孔材料中纤维间接触点数量的理论模型[J]. 纺织学报, 2019, 40(12): 21-26.
[5] 王杰, 周茗玮, 汪滨, 李秀艳. 纳米纤维膜基柔性压力传感器的优化设计制备[J]. 纺织学报, 2019, 40(11): 32-37.
[6] 崔俊杰 徐旭凡 马辉. 多孔绵材料层对防水透湿复合织物性能的影响[J]. 纺织学报, 2016, 37(11): 55-58.
[7] 姚跃飞;高磊;杨琼丽;俞来明;罗勇波;傅雅琴;刘冠峰. 玻璃纤维织物结构参数对隔声性能的影响[J]. 纺织学报, 2009, 30(02): 52-55.
[8] 高欣;张海萍;陈宇;朱良均;闵思佳. 丝素蛋白多孔材料及其在组织工程领域的应用[J]. 纺织学报, 2008, 29(10): 132-136.
[9] 黄机质.;张建春;王锋. 防护服用聚四氟乙烯复合膜的结构和性能[J]. 纺织学报, 2006, 27(9): 78-80.
[10] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 管映亭;董政娥;金志浩. 纳米材料及其在纺织等领域中的应用[J]. 纺织学报, 2004, 25(03): 116 -118 .
[2] 谭俊孝. 影响粗纱伸长率差异的因素分析[J]. 纺织学报, 1986, 7(04): 33 -35 .
[3] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .
[4] 闻荻江;王辉;朱新生;孙建平. 丝素蛋白的构象与结晶性[J]. 纺织学报, 2005, 26(1): 110 -112 .
[5] 丛洪莲;葛明桥;蒋高明 . 贾卡经编针织物的计算机仿真[J]. 纺织学报, 2009, 30(01): 112 -116 .
[6] 夏正兴. 宋锦今昔观[J]. 纺织学报, 1983, 4(12): 59 .
[7] 杨红穗;张元明. 大麻纺织应用前景及研究现状[J]. 纺织学报, 1999, 20(04): 62 -64 .
[8] 李永强;刘今强;邵建中. CF4低温等离子体处理对羊毛织物性能的影响[J]. 纺织学报, 2009, 30(04): 69 -73 .
[9] 郑秀实. 中国纺织工程学会除尘专业组1993年学术交流会[J]. 纺织学报, 1994, 15(01): 47 .
[10] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .