纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 149-155.doi: 10.13475/j.fzxb.20211102207

• 染整与化学品 • 上一篇    下一篇

具有低角度依赖性的全可见光谱结构色薄膜的制备

林田田, 杨丹, 高伟洪(), 张之悦, 赵小燕   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2021-11-03 修回日期:2021-12-01 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 高伟洪
  • 作者简介:林田田(1996—),女,硕士生。主要研究方向为非晶光子晶体材料。
  • 基金资助:
    国家自然科学基金项目(51803117);上海高校青年东方学者岗位计划资助项目(QD2018040)

Low angle-dependent structurally coloured films over full visible spectrum

LIN Tiantian, YANG Dan, GAO Weihong(), ZHANG Zhiyue, ZHAO Xiaoyan   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-11-03 Revised:2021-12-01 Published:2022-02-15 Online:2022-03-15
  • Contact: GAO Weihong

摘要:

为解决传统染料高污染、高能耗等问题,实现无污染的全可见光谱结构色的制备,采用基于Stöber法的溶剂调控法合成了3种不同粒径(320、240和200 nm)的SiO2纳米颗粒(SNPs),3种粒径的SNPs分别制备出了红色、绿色和紫色SiO2光子晶体(PC)薄膜,然后通过改变2种粒径SNPs的质量比制备了能够覆盖全可见光谱的结构色PC薄膜。结果表明:当较小尺寸SNPs的比例增加时,PC膜的结构色发生蓝移,另外由2种粒径SNPs组成的PC薄膜显示出低角度依赖性的结构色,这是由其非晶光子晶体(APC)结构所造成的,传统全可见光谱结构色的获取需要合成一系列粒径的微球,这种方法与传统制备方法相比更简单、更快速,可作为颜料和涂料对不同的基材染色。

关键词: 结构色, 光子晶体, 二氧化硅纳米颗粒, 全可见光谱色, 低角度依赖性

Abstract:

In order to solve high pollution and energy consumption of traditional dyes, and prepare full visible spectral structural colours with no pollution, three batches of different sized (320, 240 and 200 nm) silica nanoparticles (SNPs) were synthesized by using a Stöber-based solvent varying method, the silica photonic crystal(PC) films were fabricated from the three sized bare SNPs with vivid red, green, and purple colours, respectively, and structurally coloured PC films over the full visible spectrum were fabricated by varying the mass ratio of two sized SNPs. The result showed that the structural colours of the PC films had a blue shift when the ratio of the smaller sized SNPs increased. The PC films consisting of non-uniform two sized SNPs showed low angle dependent structural colours, due to its amorphous PC structure. This method is simpler and faster than traditional self-assembly of PC materials that require a series of different sized microsphere bathes for each color, and is suitable for making stable colours as pigments and coatings on different substrates.

Key words: structural colour, photonic crystal, silica nanoparticle, full visible spectrum, low angle-dependence

中图分类号: 

  • TS190.2

表1

Sa、Sb 和 Sc的合成配方"

样品 EtOH NH3·H2O H2O TEOS
Sa 60 8 3 6
Sb 75 8 3 6
Sc 90 8 3 6

图1

全可见光谱结构色薄膜的制备流程"

图2

粒径分布图"

图3

Sa、Sb和Sc PC薄膜的反射率曲线以及光学照片"

图4

PC薄膜的光学照片以与射率波谱图以及Sb质量分数与反射峰波长关系"

图5

平均粒径与薄膜的CIE 1931色度图"

图6

PC薄膜的SEM图像以及对应的FFT图像"

图7

不同观察角度下PC薄膜的反射波普图"

[1] LIU Y, HU J, WU Z H. Fabrication of coatings with structural color on a wood surface[J]. Coatings, 2020, 10(1): 32.
doi: 10.3390/coatings10010032
[2] FANG Y C, LIU X H, ZHENG H L, et al. Eco-friendly colorization of textile originating from polydopamine nanofilm structural color with high colorfastness[J]. Journal of Cleaner Production, 2021, 295(1): 126523.
doi: 10.1016/j.jclepro.2021.126523
[3] ZHOU C T, QI Y, ZHANG S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing[J]. Dyes and Pigments, 2020, 176:108226.
doi: 10.1016/j.dyepig.2020.108226
[4] LI Y C, FAN Q S, WANG X H, et al. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles[J]. Advanced Functional Materials, 2021, 31(19): 2010746.
doi: 10.1002/adfm.v31.19
[5] CHAI L Q, ZHOU L, LIU G J, et al. Interface-gravity joint self-assembly behaviors of P(St-MAA) colloidal microspheres on polyester fabric substrates[J]. Journal of Materials Science, 2017, 52(9): 5060-5071.
doi: 10.1007/s10853-016-0743-5
[6] WANG F, ZHANG X, LIN Y, et al. Structural coloration pigments based on carbon modified ZnS@SiO2 nanospheres with low-angle dependence, high color saturation and enhanced stability[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 5009-5016.
[7] ZHU X W, YAN B B, YAN X J, et al. Fabrication of non-iridescent structural color on silk surface by rapid polymerization of dopamine[J]. Progress in Organic Coatings, 2020, 149:105904.
doi: 10.1016/j.porgcoat.2020.105904
[8] KAWAMURA A, KOHRI M, MORIMOTO G, et al. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors[J]. Scientific Reports, 2016, 6:33984.
doi: 10.1038/srep33984
[9] LI K X, LI C, LI H Z, et al. Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing[J]. Science, 2021, 24(2): 102121.
[10] WEI W, DONG B, CAO L, et al. Fabrication of angle-independent anti-reflective structural color coating powders[J]. Materials Today Physics, 2021, 17:100361.
doi: 10.1016/j.mtphys.2021.100361
[11] SU X, XIA H B, ZHANG S F, et al. Vivid structural colors low angle-dependence from long-range ordered photonic crystal films with[J]. Nanoscale, 2017, 9(9): 3002-3009.
doi: 10.1039/C6NR07523A
[12] ZHANG Y F, DONG B Q, CHEN A, et al. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility[J]. Advanced Materials, 2015, 27(32): 4719-4724.
doi: 10.1002/adma.v27.32
[13] GU H C, YE B F, DING H B, et al. Non-iridescent structural color pigments from liquid marbles[J]. Journal of Materials Chemistry C, 2015, 3(26): 6607-6612.
doi: 10.1039/C5TC00644A
[14] LI Q S, ZHANG Y F, SHI L, et al. Additive mixing and conformal coating of non-iridescent structural colors with robust mechanical properties fabricated by atomization deposition[J]. ACS Nano, 2018, 12(4): 3095-3102.
doi: 10.1021/acsnano.7b08259
[15] ZHOU L, WU Y J, LIU G J, et al. Fabrication of high-quality silica photonic crystals on polyester fabrics by gravitational sedimentation self-assembly[J]. Coloration Technology, 2016, 131(6): 413-423.
doi: 10.1111/cote.2015.131.issue-6
[16] GOERLITZER E S A, TAYLOR R N K, VOGEL N. Bioinspired photonic pigments from colloidal self-assembly[J]. Advanced Materials, 2018, 30(28): 1706654.
doi: 10.1002/adma.v30.28
[17] LEE C H, YU J L, WANG Y M, et al. Effect of graphene oxide inclusion on the optical reflection of a silica photonic crystal film[J]. RSC Advances, 2018, 8(30): 16593-16602.
doi: 10.1039/C8RA02235F
[18] AGUIRRE C I, REGUERA E, STEIN A. Colloidal photonic crystal pigments with low angle depen-dence[J]. Acs Applied Materials & Interfaces, 2010, 2(11): 3257-3262.
[19] LIU G J, ZHOU L, ZHANG G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology[J]. Materials and Design, 2017, 114(15): 10-17.
doi: 10.1016/j.matdes.2016.09.102
[20] LEE H S, SHIM T S, HWANG H, et al. Colloidal photonic crystals toward structural color palettes for security materials[J]. Chemistry of Materials, 2013, 25(13): 2684-2690.
doi: 10.1021/cm4012603
[21] CONG H L, YU B, WANG S P, et al. Preparation of iridescent colloidal crystal coatings with variable structural colors[J]. Optics Express, 2013, 21(15): 17831-17838.
doi: 10.1364/OE.21.017831
[22] ZHENG X, WANG Q, LUAN J L, et al. Angle-dependent structural colors in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint technology[J]. Beilstein Journal of Nanotechnology, 2019, 10(1): 1211-1216.
doi: 10.3762/bjnano.10.120
[23] WANG W T, TANG B T, MA W, et al. Easy approach to assembling a biomimetic color film with tunable structural colors[J]. Journal of the Optical Society of America A, 2015, 32(6): 1109-1117.
doi: 10.1364/JOSAA.32.001109
[24] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
doi: 10.1016/0021-9797(68)90272-5
[25] GAO W H, RIGOUT M, OWENS H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals[J]. Journal of Nanoparticle Research, 2016, 18(12): 387.
doi: 10.1007/s11051-016-3691-8
[26] GAO W H, RIGOUT M, OWENS H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum[J]. Applied Surface Science, 2016, 380(1): 12-15.
doi: 10.1016/j.apsusc.2016.02.106
[27] GAO W H, RIGOUT M, OWENS H. The structural coloration of textile materials using self-assembled silica nanoparticles[J]. Journal of Nanoparticle Research, 2017, 19(9): 303.
doi: 10.1007/s11051-017-3991-7
[28] 陈佳颖, 田旭, 彭晶晶, 等. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(7): 117-121.
CHEN Jiaying, TIAN Xu, PENG Jingjing, et al. Fabrication of structural colors for knitted fabrics[J]. Journal of Textile Research, 2020, 41(7): 117-121.
[29] 李义臣, 刘国金, 邵建中, 等. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67.
LI Yichen, LIU Guojin, SHAO Jianzhong, et al. Structural colors of SiO2/polymethylmethacrylate photonic crystal on polyester fabrics[J]. Journal of Textile Research, 2016, 37(10): 62-67.
[30] PAN M Y, LI X B, XIONG C J, et al. Robust and flexible colloidal photonic crystal films with bending strain-independent structural colors for anticounter-feiting[J]. Particle & Particle Systems Characterization, 2020, 37(4): 1900495.
[31] TILLEY R J D. Colour and the optical properties of materials[M]. New York: John Wiley & Sons, 2010: 221.
[32] 林田田, 杨丹, 陈佳颖, 等. 不同粒径SiO2粒子混合制备光子晶体结构色薄膜[J]. 精细化工, 2021, 38(8): 1693-1698.
LIN Tiantian, YANG Dan, CHEN Jiaying, et al. Fabrication of photonic crystal structurally colored films by mixing different sized silica nanoparticles[J]. Fine Chemicals, 2021, 38(8): 1693-1698.
[1] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[2] 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20.
[3] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[4] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[5] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[6] 陈佳颖, 辛斌杰, 辛三法, 杜卫平, 许颖琦, 高伟洪. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04): 181-187.
[7] 张慧 刘晓艳. 光子晶体在织物表面的色泽呈现[J]. 纺织学报, 2017, 38(08): 91-95.
[8] 李义臣 刘国金 邵建中 周岚. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67.
[9] 叶丽华 杜文琴. 结构色织物的光学性能[J]. 纺织学报, 2016, 37(08): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[7] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16 -22 .
[8] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[9] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46 -53 .
[10] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41 -48 .