纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 189-195.doi: 10.13475/j.fzxb.20211103907
杨腾祥1, 申国栋1,2(), 钱利江2, 胡华军2, 毛雪1,3, 孙润军1,3
YANG Tengxiang1, SHEN Guodong1,2(), QIAN Lijiang2, HU Huajun2, MAO Xue1,3, SUN Runjun1,3
摘要:
为降低光生载流子的二次复合,提高粉体光催化剂降解印染废水后的可回收性,利用施加外电场极化与表面沉积贵金属改性法制备银-钛酸钡(Ag-BaTiO3)纳米粉体,以涤纶织物为基体制备涤纶基Ag-BaTiO3复合材料(Ag-BaTiO3/涤纶织物)。对材料的微观结构和形貌进行表征,以活性黄X-B染料为目标降解物,评价极化前后Ag-BaTiO3/涤纶织物的光催化性能。结果表明:Ag-BaTiO3纳米颗粒均匀沉积在涤纶织物表面,表面沉积贵金属Ag提高了BaTiO3的可见光吸收活性;经外加电场极化处理后,Ag-BaTiO3的剩余极化强度由1.61 μC/cm2增加至4.22 μC/cm2;Ag-BaTiO3/涤纶织物对目标染料的降解率由88.36%提升至99.36%。
中图分类号:
[1] |
KESKIN B, ERSAHIN M E, OZGUN H, et al. Pilot and full-scale applications of membrane processes for textile wastewater treatment: a critical review[J]. Journal of Water Process Engineering, 2021, 42(1): 102172.
doi: 10.1016/j.jwpe.2021.102172 |
[2] |
THANGARAJ S, BANKOLE P O, SADASIVAM S K. Microbial degradation of azo dyes by textile effluent adapted, enterobacter hormaechei under microaerophilic condition[J]. Microbiological Research, 2021, 250(1): 126805.
doi: 10.1016/j.micres.2021.126805 |
[3] |
HAN Taixing, ZHENG Jingjing, HAN Yutong, et al. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress[J]. Science of the Total Environment, 2021, 791:148145.
doi: 10.1016/j.scitotenv.2021.148145 |
[4] |
ZENG Qian, WANG Yu, ZAN Feixiang, et al. Biogenic sulfide for azo dye decolorization from textile dyeing wastewater[J]. Chemosphere, 2021, 283(4): 131158.
doi: 10.1016/j.chemosphere.2021.131158 |
[5] |
XIONG Shu, HAN Chao, PHOMMACHANH A, et al. High-performance loose nanofiltration membrane prepared with assembly of covalently cross-linked polyethyleneimine-based polyelectrolytes for textile wastewater treatment[J]. Separation and Purification Technology, 2021, 274:119105.
doi: 10.1016/j.seppur.2021.119105 |
[6] | 张家琳. 二氧化钛光电极的制备及光电催化脱色纺织印染废水的研究[D]. 无锡: 江南大学, 2020: 1-2. |
ZHANG Jialin. preparation of titanium dioxide photocatalyst and its application in decolorization of textile printing and dyeing wastewater[D]. Wuxi: Jiangnan University, 2020: 1-2. | |
[7] |
DOMINGUES F S, GERALDINO H C, FREITAS T K, et al. Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5composite catalyst under UV/Vis irradiation[J]. Environmental Technology, 2021, 42(15): 2335-2349.
doi: 10.1080/09593330.2019.1701565 |
[8] |
MUHAMMAD S, ZAFAR M, AHMED A, et al. Castor leaves-based biochar for adsorption of safranin from textile wastewater[J]. Sustainability, 2021, 13(12): 6926.
doi: 10.3390/su13126926 |
[9] |
JIANG Hongquan, SUN Jianzhe, ZANG Shuying, et al. Constructing broad spectrum response ROQDs/Bi2WO6/CQDs heterojunction nanoplates: synergetic mechanism of boosting redox abilities for photocatalytic degradation pollutant[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105674.
doi: 10.1016/j.jece.2021.105674 |
[10] |
LIU Xiaofang, XIAO Longyin, ZHANG Yong, et al. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye[J]. Journal of Materiomics, 2020, 6(2): 256-262.
doi: 10.1016/j.jmat.2020.03.004 |
[11] |
VU T T, RÍO L D, VALDÉS-SOLÍS T, et al. Tailoring the synjournal of stainless steel wire mesh-supported ZnO[J]. Materials Research Bulletin, 2012, 47(6): 1577-1586.
doi: 10.1016/j.materresbull.2012.02.017 |
[12] |
XU Tingting, LIU Xuan, WANG Shulan, et al. Ferroelectric oxide nanocomposites with trimodal pore structure for high photocatalytic performance[J]. Nano-Micro Letters, 2019, 11(3): 5-20.
doi: 10.1007/s40820-018-0233-1 |
[13] |
SENTHIL V, PANIGRAHI S. Dielectric, ferroelectric, impedance and photocatalytic water splitting study of Y3+ modified SrBi2Ta2O9 ferroelectrics[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18058-18071.
doi: 10.1016/j.ijhydene.2019.05.064 |
[14] |
MORRIS M R, PENDLEBURY S R, HONG J, et al. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion[J]. Advanced Materials, 2016, 28:7123-7128.
doi: 10.1002/adma.v28.33 |
[15] |
SU Ran, SHEN Yajing, LI Linglong, et al. Silver-modified nanosized ferroelectrics as a novel photocata-lyst[J]. Small, 2015, 11:202-207.
doi: 10.1002/smll.201401437 pmid: 25186805 |
[16] |
SHEN Guodong, PU Yongpin, CUI Yongfei, et al. Effect of ferroelectric Ba0.8Sr0.2TiO3 on the charge carrier separation of BiOBr at different temperature[J]. Applied Surface Science, 2021, 550:149366.
doi: 10.1016/j.apsusc.2021.149366 |
[17] |
ZHANG Yuhan, SHEN Guodong, SHENG Cuihong, et al. The effect of piezo-photocatalysis on enhancing the charge carrier separation in BaTiO3/KNbO3 heterostructure photocatalyst[J]. Applied Surface Science, 2021, 562:150164.
doi: 10.1016/j.apsusc.2021.150164 |
[18] | 吴化平, 令欢, 张征, 等. 铁电材料光催化活性的研究进展[J]. 物理学报, 2017, 66(16): 277-286. |
WU Huaping, LING Huan, ZHANG Zheng, et al. Research progress on photocatalytic activity of ferroelectric materials[J]. Acta Physica Sinica, 2017, 66(16): 277-286. | |
[19] | 崔宗杨, 谢忠帅, 汪尧进, 等. 钙钛矿铁电半导体的光催化研究现状及其展望[J]. 物理学报, 2020, 69(12): 51-83. |
CUI Zongyang, XIE Zhongshuai, WANG Yaojin, et al. Research status and prospect of photocatalysis of perovskite ferroelectric semiconductor[J]. Acta Physica Sinica, 2020, 69(12): 51-83. | |
[20] |
YE Shangshi, CHEN Yingxu, YAO Xiaoling, et al. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: a review[J]. Chemosphere, 2021, 273:128503-128503.
doi: 10.1016/j.chemosphere.2020.128503 pmid: 33070977 |
[21] |
SINGH J, SONI R K. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626:127005.
doi: 10.1016/j.colsurfa.2021.127005 |
[22] |
RHAMAN M M, GANGULI S, BERA S, et al. Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway[J]. Journal of Water Process Engineering, 2020, 36:101256.
doi: 10.1016/j.jwpe.2020.101256 |
[23] | 朱明玥. 负载锥状钛酸盐的聚丙烯腈纳米纤维膜的制备及其光催化性能研究[D]. 苏州: 苏州大学, 2020: 6-16. |
ZHU Mingyue. Preparation and photocatalytic performance of cone shaped titanate/PAN nano-fiber[D]. Suzhou: Soochow University, 2020: 6-16. | |
[24] | 俞幼萍, 刘保江, 何瑾馨. FeVO4负载型棉织物的制备及其光催化降解性[J]. 印染, 2016, 42:7-13. |
YU Youping, LIU Baojiang, HE Jinxin. FeVO4 preparation and photocatalytic degradability of loaded cotton fabric[J]. China Dyeing & Finishing, 2016, 42:7-13. | |
[25] |
DONG Guoqing, WANG Yanan, LEI Huanyu, et al. Hierarchical mesoporous titania nanoshell encapsulated on polyimide nanofiber as flexible, highly reactive, energy saving and recyclable photocatalyst for water purification[J]. Journal of Cleaner Production, 2020, 253:120021.
doi: 10.1016/j.jclepro.2020.120021 |
[26] | 郭庆峰, 孙红蕊, 李登新. 织物基CNT/BiVO4光催化材料的制备及其在可见光下对染料的降解[J]. 印染, 2021, 47(3): 60-64. |
GUO Qingfeng, SUN Hongrui, LI Dengxin. Preparation of fabric-based CNT/BiVO4 photocatalytic materials and their degradation of dyes under visible light[J]. China Dyeing & Finishing, 2021, 47(3): 60-64. | |
[27] | 李鹏飞. 涤纶织物的亲水整理研究[D]. 柳州: 广西科技大学, 2019: 45. |
LI Pengfei. Study on hydrophilic finishing of polyester fabric[D]. Liuzhou: Guangxi University of Science and Technology, 2019: 45. | |
[28] | YU Donghui, YU Xiaodan, WANG Changhua, et al. Synjournal of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2781-2787. |
[1] | 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170. |
[2] | 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128. |
[3] | 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83. |
[4] | 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101. |
[5] | 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107. |
[6] | 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104. |
[7] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
[8] | 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111. |
[9] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[10] | 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14. |
[11] | 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97. |
[12] | 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92. |
[13] | 戴悦, 张瑞萍, 王秋萍, 胡亚楠, 张贤国. 柠檬酸/β-环糊精整理涤纶织物的消臭效果[J]. 纺织学报, 2019, 40(12): 104-108. |
[14] | 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118. |
[15] | 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47. |
|