纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 30-36.doi: 10.13475/j.fzxb.20211104507
QIANG Rong1,2(), FENG Shuaibo1, MA Qian1, CHEN Bowen1, CHEN Yi1
摘要:
为解决碳纤维基吸波材料制备方法繁杂、能耗高的问题,以棉纤维为原料,Co2+为金属源,2-甲基咪唑为配体,经配位自组装获得棉纤维表面均匀负载的ZIF-67,复合材料经惰性气氛下高温煅烧得到钴/碳纤维复合材料。结果表明:随煅烧温度升高,钴纳米粒子结晶度更高,材料的矫顽力和饱和磁化强度增强,铁磁特性明显;煅烧温度有助于碳组分由无定形碳向微晶石墨转变,碳组分石墨化程度升高;800 ℃时钴/碳纤维复合材料的吸波性能最佳,厚度为2 mm时,有效吸收带宽可达5.44 GHz (9.36~14.80 GHz),复合材料优异的吸波性能归因于适宜的阻抗匹配和介电损耗与磁损耗的协同增强,相互搭载的纤维结构为电磁波构筑了适宜的衰减空间,并在碳纤维导电网络中快速衰减,研究将为新型碳纤维基吸波材料的设计开发提供借鉴。
中图分类号:
[1] |
ZHAO B, LI Y, ZENG Q, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties[J]. Small, 2020, 16(40): 2003502.
doi: 10.1002/smll.v16.40 |
[2] |
XU J J, LIU J W, CHE R C, et al. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells[J]. Nanoscale, 2014, 6:5782-5790.
doi: 10.1039/C4NR00158C |
[3] | SHE W, BI H, WEN Z W, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@alphaMnO2 microspindles studied by electron holography[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9782-9789. |
[4] |
XU C Y, WANG L, LI X, et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within "tubes on rods"matrix toward enhanced microwave absorption[J]. Nano-Micro Letters, 2021, 13:47.
doi: 10.1007/s40820-020-00572-5 |
[5] |
YANG J, ZHANG J, LIANG C Y, et al. Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synjournal and their strong microwave absorption[J]. ACS Appl Mater Inter, 2013, 5(15): 7146-7151.
doi: 10.1021/am4014506 |
[6] | HUANG Y X, YUAN X J, CHEN M J, et al. Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44731-44740. |
[7] |
CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48:788-796.
doi: 10.1016/j.carbon.2009.10.028 |
[8] |
ZHAO S C, YAN L L, TIAN X D, et al. Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance[J]. Nano Research, 2018, 11:530-541.
doi: 10.1007/s12274-017-1664-6 |
[9] |
GUAN H, WANG Q, WU X, et al. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption mate-rials[J]. Composites Part B: Engineering, 2021, 207:108562.
doi: 10.1016/j.compositesb.2020.108562 |
[10] |
LEI L, WANG Y, ZHANG Z, et al. Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts[J]. ACS Catalysis, 2020, 10(15): 8788-8814.
doi: 10.1021/acscatal.0c01900 |
[11] | FAN G, JIANG Y, XIN J, et al. Facile synjournal of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing proper-ties[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18765-18774. |
[12] | GOU G, MENG F, WANG H, et al. Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption[J]. Nano Research, 2019(12): 1423-1429. |
[13] | ZHAO H, CHENG Y, MA J, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber[J]. Chemical Engineering Journal, 2018, 39:432-441. |
[14] | ZHAO H, CHENG Y, LV H, et al. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15850-15857. |
[15] |
ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142:245-253.
doi: 10.1016/j.carbon.2018.10.027 |
[16] |
SUN X, YANG M, YANG S, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure[J]. Small, 2019, 15(43): 1902974.
doi: 10.1002/smll.v15.43 |
[17] | WANG H, MENG F, LI J, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11801-11810. |
[1] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8. |
[2] | 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27. |
[3] | 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202. |
[4] | 陈君妍, 鞠敬鸽, 邓南平, 杨琪, 程博闻, 康卫民. 兔毛基中空碳纤维在锂硫电池中的应用[J]. 纺织学报, 2021, 42(03): 56-63. |
[5] | 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134. |
[6] | 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188. |
[7] | 王美红 王曙东. 柳皮纤维的结构与性能[J]. 纺织学报, 2016, 37(01): 23-27. |
[8] | 郝新敏 郭亚飞. 生物基锦纶环保加工技术及其应用[J]. 纺织学报, 2015, 36(04): 160-164. |
[9] | 吴雄英. 生物质再生纤维成份标签的技术要求及相关思考[J]. 纺织学报, 2014, 35(2): 153-0. |
[10] | 尤秀兰;刘兆峰;曹煜彤;胡祖明. 挤出PPTA冻胶体厚度对浆粕性能的影响[J]. 纺织学报, 2006, 27(9): 22-24. |
|