纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 30-36.doi: 10.13475/j.fzxb.20211104507

• 纤维材料 • 上一篇    下一篇

钴/碳纤维复合材料的制备及其吸波性能

强荣1,2(), 冯帅博1, 马茜1, 陈博文1, 陈熠1   

  1. 1.中原工学院 纺织学院, 河南 郑州 450007
    2.河南省纺织服装产业协同创新中心, 河南 郑州 450007
  • 收稿日期:2021-11-08 修回日期:2021-12-06 出版日期:2022-02-15 发布日期:2022-03-15
  • 作者简介:强荣(1989—),女,讲师,博士。主要研究方向为碳纤维基电磁波吸收材料/织物的开发。E-mail: casey2009@126.com
  • 基金资助:
    国家自然科学基金项目(51902359);河南省重点研发与推广专项资助项目(202102210017);中国纺织工业联合会科技指导性项目(2021045);中原工学院青年骨干教师项目(2020XQG02);中原工学院交叉学科团队支持计划项目(中工研[2020]13)

Preparation and microwave absorption performance of cobalt/carbon fiber composites

QIANG Rong1,2(), FENG Shuaibo1, MA Qian1, CHEN Bowen1, CHEN Yi1   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan 450007, China
  • Received:2021-11-08 Revised:2021-12-06 Published:2022-02-15 Online:2022-03-15

摘要:

为解决碳纤维基吸波材料制备方法繁杂、能耗高的问题,以棉纤维为原料,Co2+为金属源,2-甲基咪唑为配体,经配位自组装获得棉纤维表面均匀负载的ZIF-67,复合材料经惰性气氛下高温煅烧得到钴/碳纤维复合材料。结果表明:随煅烧温度升高,钴纳米粒子结晶度更高,材料的矫顽力和饱和磁化强度增强,铁磁特性明显;煅烧温度有助于碳组分由无定形碳向微晶石墨转变,碳组分石墨化程度升高;800 ℃时钴/碳纤维复合材料的吸波性能最佳,厚度为2 mm时,有效吸收带宽可达5.44 GHz (9.36~14.80 GHz),复合材料优异的吸波性能归因于适宜的阻抗匹配和介电损耗与磁损耗的协同增强,相互搭载的纤维结构为电磁波构筑了适宜的衰减空间,并在碳纤维导电网络中快速衰减,研究将为新型碳纤维基吸波材料的设计开发提供借鉴。

关键词: 生物质, ZIF-67, 钴/碳纤维, 长径比, 吸波材料

Abstract:

In order to solve the potential preparation problem of carbon fibers, a biomass-derived method was proposed to obtain carbon fiber-based microwave absorbers, where cotton fibers was used as the raw material, Co2+ served as the metal source, and 2-methylimidazole as ligand. The cotton fiber/ZIF-67 were acquired by coordination and self-assembly of Co2+and 2-methylimidazole. Cobalt/carbon fibers were successfully prepared by controlled high-temperature pyrolysis in the inert atmosphere. It is proved that the increased pyrolysis temperature can improve the crystallinity of cobalt nanoparticles and the coercivity and saturation magnetization are enhanced simultaneously, displaying the typical ferromagnetic properties. Raman spectra indicate that the high pyrolysis temperature is conductive to the transformation from amorphous carbon to microcrystalline graphite,which induce the increased degree of graphitization degree of carbon components. The calculated results of reflection loss show that the cobalt/carbon fiber pyrolyzed at 800 ℃ provides the best microwave absorbing performance, where the bandwidth coverage reached 5.44 GHz (9.36-14.80 GHz) with a thickness of 2 mm. The appropriate impedance matching and synergistic enhancement of dielectric loss and magnetic loss are considered to be responsible for the intensified microwave absorption. Additionally, the cross-linked carbon fibers create the suitable attenuation space for electromagnetic waves, which promotes the quick attenuation of electromagnetic energy in the conductive carbon fiber network. It is believed that the research provides reference for the rational design and development of novel carbon fiber-based microwave absorbing materials.

Key words: biomass, ZIF-67, cobalt/carbon fiber, aspect ratio, microwave absorbing material

中图分类号: 

  • O613.71

图1

钴/碳纤维复合材料制备示意图"

图2

原棉和棉纤维/ZIF-67前驱体的扫描电镜照片"

图3

棉纤维/ZIF-67的结构和热力学分析"

图4

钴/碳纤维复合材料的XRD分析"

图5

钴/碳纤维复合材料分析图"

图6

钴/碳纤维复合材料的磁滞曲线图"

图7

钴/碳纤维复合材料的介电常数图 注:ε为介电常数, ε'、ε″分别为介电常数的实部和虚部;μ为磁导率,μ'、μ″分别为磁导率的实部和虚部。"

图8

钴/碳纤维复合材料的介电损耗角正切值变化图"

图9

钴/碳纤维复合材料的磁损耗角正切值变化图"

图10

钴/碳纤维复合材料的衰减因数曲线图"

图11

钴/碳纤维复合材料的二维反射损耗图"

[1] ZHAO B, LI Y, ZENG Q, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties[J]. Small, 2020, 16(40): 2003502.
doi: 10.1002/smll.v16.40
[2] XU J J, LIU J W, CHE R C, et al. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells[J]. Nanoscale, 2014, 6:5782-5790.
doi: 10.1039/C4NR00158C
[3] SHE W, BI H, WEN Z W, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@alphaMnO2 microspindles studied by electron holography[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9782-9789.
[4] XU C Y, WANG L, LI X, et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within "tubes on rods"matrix toward enhanced microwave absorption[J]. Nano-Micro Letters, 2021, 13:47.
doi: 10.1007/s40820-020-00572-5
[5] YANG J, ZHANG J, LIANG C Y, et al. Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synjournal and their strong microwave absorption[J]. ACS Appl Mater Inter, 2013, 5(15): 7146-7151.
doi: 10.1021/am4014506
[6] HUANG Y X, YUAN X J, CHEN M J, et al. Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44731-44740.
[7] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48:788-796.
doi: 10.1016/j.carbon.2009.10.028
[8] ZHAO S C, YAN L L, TIAN X D, et al. Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance[J]. Nano Research, 2018, 11:530-541.
doi: 10.1007/s12274-017-1664-6
[9] GUAN H, WANG Q, WU X, et al. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption mate-rials[J]. Composites Part B: Engineering, 2021, 207:108562.
doi: 10.1016/j.compositesb.2020.108562
[10] LEI L, WANG Y, ZHANG Z, et al. Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts[J]. ACS Catalysis, 2020, 10(15): 8788-8814.
doi: 10.1021/acscatal.0c01900
[11] FAN G, JIANG Y, XIN J, et al. Facile synjournal of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing proper-ties[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18765-18774.
[12] GOU G, MENG F, WANG H, et al. Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption[J]. Nano Research, 2019(12): 1423-1429.
[13] ZHAO H, CHENG Y, MA J, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber[J]. Chemical Engineering Journal, 2018, 39:432-441.
[14] ZHAO H, CHENG Y, LV H, et al. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15850-15857.
[15] ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142:245-253.
doi: 10.1016/j.carbon.2018.10.027
[16] SUN X, YANG M, YANG S, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure[J]. Small, 2019, 15(43): 1902974.
doi: 10.1002/smll.v15.43
[17] WANG H, MENG F, LI J, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11801-11810.
[1] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[2] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[3] 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202.
[4] 陈君妍, 鞠敬鸽, 邓南平, 杨琪, 程博闻, 康卫民. 兔毛基中空碳纤维在锂硫电池中的应用[J]. 纺织学报, 2021, 42(03): 56-63.
[5] 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134.
[6] 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188.
[7] 王美红 王曙东. 柳皮纤维的结构与性能[J]. 纺织学报, 2016, 37(01): 23-27.
[8] 郝新敏 郭亚飞. 生物基锦纶环保加工技术及其应用[J]. 纺织学报, 2015, 36(04): 160-164.
[9] 吴雄英. 生物质再生纤维成份标签的技术要求及相关思考[J]. 纺织学报, 2014, 35(2): 153-0.
[10] 尤秀兰;刘兆峰;曹煜彤;胡祖明. 挤出PPTA冻胶体厚度对浆粕性能的影响[J]. 纺织学报, 2006, 27(9): 22-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .
[2] 贾庆龙, 焦晓宁, 王忠忠. PVDF静电纺锂电隔膜纤维直径预测模型及优化[J]. 纺织学报, 2012, 33(3): 22 -26 .
[3] 夏郁葱. 国产阻燃粘胶纤维技术现状和发展趋势[J]. 纺织学报, 2012, 33(6): 129 -135 .
[4] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1 -6 .
[5] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173 -180 .
[6] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[7] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[8] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[9] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[10] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .