纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 1-7.doi: 10.13475/j.fzxb.20211109707
• 特约专栏:生物医用纺织品 • 下一篇
乔燕莎1,2, 毛迎1,2, 徐丹瑶1,2, 李彦1,2, 李绍杰3, 王璐1,2(), 唐健雄3
QIAO Yansha1,2, MAO Ying1,2, XU Danyao1,2, LI Yan1,2, LI Shaojie3, WANG Lu1,2(), TANG Jianxiong3
摘要:
针对疝修补合成补片植入后带来的多种并发症问题,明确了并发症的诱发因素为病原菌带来的污染和补片本体材料导致的异物反应。以临床常用的经编补片为研究对象,将目前应对疝修补术后并发症的手段分为经编结构调控和表面修饰改性。根据应对场景(有菌性炎症和无菌性炎症)和使用场合(腹腔内和腹腔外)的不同,对表面修饰改性进行了分类阐述。列举了近年来相关研究及临床商用补片取得的成果进展,并将表面改性补片归纳为抗菌型、防粘连型、抗炎型,通过分别概述其相应的作用机制及并发症应对效果,分析了当前3种不同类型表面改性补片存在的问题,并指出具有高附加功能的经编补片将是未来的发展方向。
中图分类号:
[1] |
JENKINS J T, O'DWYER P J. Inguinal hernias[J]. The British Medical Journal, 2008,336(7638):269-272.
doi: 10.1136/bmj.39450.428275.AD |
[2] |
KINGSNORTH A, LEBLANC K. Hernias: inguinal and incisional[J]. Lancet, 2003,362(9395):1561-1571.
doi: 10.1016/S0140-6736(03)14746-0 |
[3] |
KALABA S, GERHARD E, WINDER J S, et al. Design strategies and applications of biomaterials and devices for hernia repair[J]. Bioactive Materials, 2016,1(1):2-17.
doi: 10.1016/j.bioactmat.2016.05.002 |
[4] |
BROWN C N, FINCH J G. Which mesh for hernia repair?[J]. Annals of the Royal College of Surgeons of England, 2010,92(4):272-278.
doi: 10.1308/003588410X12664192076296 |
[5] |
WISE J. Hernia mesh complications may have affected up to 170 000 patients, investigation finds[J]. The British Medical Journal, 2018,362:k4104. DOI: 10.1136/bmj.k4104.
doi: 10.1136/bmj.k4104 |
[6] | FALAGAS M E, KASIAKOU S K. Mesh-related infections after hernia repair surgery[J]. Clinical Microbiology and Infection, 2005,11(1):3-8. |
[7] |
GUILLAUME O, PEREZ-TANOIRA R, FORTELNY R, et al. Infections associated with mesh repairs of abdominal wall hernias: are antimicrobial biomaterials the longed-for solution?[J]. Biomaterials, 2018,167:15-31.
doi: 10.1016/j.biomaterials.2018.03.017 |
[8] | CHANDORKAR Y, RAVIKUMAR K, BASU B. The foreign body response demystified[J]. ACS Biomaterials Science & Engineering, 2018,5(1):19-44. |
[9] |
ANDERSON J M, RODRIGUEZ A, CHANG D T. Foreign body reaction to biomaterials[J]. Seminars in Immunology, 2008,20(2):86-100.
doi: 10.1016/j.smim.2007.11.004 |
[10] |
ZHU L M. Mesh implants: an overview of crucial mesh parameters[J]. World Journal of Gastrointestinal Surgery, 2015,7(10):226-236.
doi: 10.4240/wjgs.v7.i10.226 |
[11] |
SANBHAL N, MIAO L L, XU R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. Journal of Industrial Textiles, 2018,48(1):333-360.
doi: 10.1177/1528083717690613 |
[12] |
PAPADIMITRIOU J, PETROS P. Histological studies of monofilament and multifilament polypropylene mesh implants demonstrate equivalent penetration of macrophages between fibrils[J]. Hernia, 2005,9(1):75-78.
doi: 10.1007/s10029-004-0286-6 |
[13] |
ENGELSMAN A F, VAN H C, BUSSCHER H J, et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization[J]. British Journal of Surgery, 2008,95(8):1051-1059.
doi: 10.1002/bjs.6154 |
[14] |
KLINGE U, JUNGE K, SPELLERBERG B, et al. Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model[J]. Journal of Biomedical Materials Research, 2002,63(6):765-771.
doi: 10.1002/(ISSN)1097-4636 |
[15] |
DIAZ-GODOY A, GARCIA-URENA M A, LOPEZ-MONCLUS J, et al. Searching for the best polypropylene mesh to be used in bowel contamination[J]. Hernia, 2011,15(2):173-179.
doi: 10.1007/s10029-010-0762-0 |
[16] |
ZOGBI L, TRINDADE E N, TRINDADE M R. Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes[J]. Hernia, 2013,17(6):765-772.
doi: 10.1007/s10029-013-1046-2 |
[17] |
RUTEGARD M, GUMUSCU R, STYLIANIDIS G, et al. Chronic pain, discomfort, quality of life and impact on sex life after open inguinal hernia mesh repair: an expertise-based randomized clinical trial comparing lightweight and heavyweight mesh[J]. Hernia, 2018,22(3):411-418.
doi: 10.1007/s10029-018-1734-z |
[18] |
CARRO J L P, RIU S V, LOJO B R, et al. Randomized clinical trial comparing low density versus high density meshes in patients with bilateral inguinal hernia[J]. American Surgeon, 2017,83(12):1352-1356.
doi: 10.1177/000313481708301217 |
[19] |
BONA S, ROSATI R, OPOCHER E, et al. Pain and quality of life after inguinal hernia surgery: a multicenter randomized controlled trial comparing lightweight vs heavyweight mesh (supermesh study)[J]. Updates in Surgery, 2018,70(1):77-83.
doi: 10.1007/s13304-017-0483-3 |
[20] |
YABANOGLU H, ARER I M, CALISKAN K. The effect of the use of synthetic mesh soaked in antibiotic solution on the rate of graft infection in ventral hernias: a prospective randomized study[J]. International Surgery, 2015,100(6):1040-1047.
doi: 10.9738/INTSURG-D-14-00304.1 |
[21] |
HAJIPOUR M J, FROMM K M, ASHKARRAN A A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012,30(10):499-511.
doi: 10.1016/j.tibtech.2012.06.004 |
[22] |
BROWNE K, CHAKRABORTY S, CHEN R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides[J]. International Journal of Molecular Sciences, 2020,21(19).DOI: 10.3390/ijms21197047.
doi: 10.3390/ijms21197047 |
[23] |
SANBHAL N, LI Y, KHATRI A, et al. Chitosan cross-linked bio-based antimicrobial polypropylene meshes for hernia repair loaded with levofloxacin HCl via cold oxygen plasma[J]. Coatings, 2019,9(3).DOI: 10.3390/coatings9030168.
doi: 10.3390/coatings9030168 |
[24] |
SAITAER X, SANBHAL N, QIAO Y S, et al. Polydopamine-inspired surface modification of polypropylene hernia mesh devices via cold oxygen plasma: antibacterial and drug release properties[J]. Coatings, 2019,9(3). DOI: 10.3390/coatings9030164.
doi: 10.3390/coatings9030164 |
[25] |
SANBHAL N, SAITAER X, LI Y, et al. Controlled levofloxacin release and antibacterial properties of-cyclodextrins-grafted polypropylene mesh devices for hernia repair[J]. Polymers, 2018,10(5).DOI: 10.3390/polym10050493.
doi: 10.3390/polym10050493 |
[26] |
PEREZ-KOHLER B, PASCUAL G, BENITO-MARTINEZ S, et al. Thermo-responsive antimicrobial hydrogel for the in-situ coating of mesh materials for hernia repair[J]. Polymers, 2020,12(6). DOI: 10.3390/polym12061245.
doi: 10.3390/polym12061245 |
[27] |
REINBOLD J, HIERLEMANN T, URICH L, et al. Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections[J]. Drug Design Development and Therapy, 2017,11:2753-2762.
doi: 10.2147/DDDT |
[28] |
PEREZ-KOHLER B, LINARDI F, PASCUAL G, et al. Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating[J]. Hernia, 2020,24(6):1201-1210.
doi: 10.1007/s10029-019-02096-3 |
[29] |
FERNANDEZ-GUTIERREZ M, PEREZ-KOHLER B, BENITO-MARTINEZ S, et al. Development of biocomposite polymeric systems loaded with antibacterial nanoparticles for the coating of polypropylene biomaterials[J]. Polymers, 2020,12(8). DOI: 10.3390/polym12081829.
doi: 10.3390/polym12081829 |
[30] |
BENITO-MARTINEZ S, PEREZ-KOHLER B, RODRIGUEZ M, et al. Antibacterial biopolymer gel coating on meshes used for abdominal hernia repair promotes effective wound repair in the presence of infection[J]. Polymers, 2021,13(14). DOI: 10.3390/polym13142371.
doi: 10.3390/polym13142371 |
[31] |
SANBHAL N, MAO Y, SUN G, et al. Preparation and characterization of antibacterial polypropylene meshes with covalently incorporated beta-cyclodextrins and captured antimicrobial agent for hernia repair[J]. Polymers, 2018,10(1). DOI: 10.3390/polym10010058.
doi: 10.3390/polym10010058 |
[32] |
PEREZ-KOHLER B, BENITO-MARTINEZ S, RODRIGUEZ M, et al. Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes[J]. Hernia, 2019,23(4):789-800.
doi: 10.1007/s10029-019-01917-9 |
[33] |
PEREZ-KOHLER B, FERNANDEZ-GUTIERREZ M, PASCUAL G, et al. In vitro assessment of an antibacterial quaternary ammonium-based polymer loaded with chlorhexidine for the coating of polypropylene prosthetic meshes[J]. Hernia, 2016,20(6):869-878.
doi: 10.1007/s10029-016-1537-z |
[34] |
MUZIO G, PERERO S, MIOLA M, et al. Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017,105(6):1586-1593.
doi: 10.1002/jbm.b.v105.6 |
[35] |
ADIGUZEL E N, ESEN E, AYLAZ G, et al. Do nano-crystalline silver-coated hernia grafts reduce infection?[J]. World Journal of Surgery, 2018,42(11):3537-3542.
doi: 10.1007/s00268-018-4661-3 |
[36] |
SAHA T, HOUSHYAR S, SARKER S R, et al. Nanodiamond-chitosan functionalized hernia mesh for biocompatibility and antimicrobial activity[J]. Journal of Biomedical Materials Research Part A, 2021,109(12):2449-2461.
doi: 10.1002/jbm.a.v109.12 |
[37] |
DE M I, PRIETO I, ALBORNOZ A, et al. Plasmon-based biofilm inhibition on surgical implants[J]. Nano Letters, 2019,19(4):2524-2529.
doi: 10.1021/acs.nanolett.9b00187 |
[38] |
LIU P B, CHEN N L, JIANG J H, et al. Preparation and in vitro evaluation of new composite mesh functionalized with cationic antimicrobial peptide[J]. Materials, 2019,12(10). DOI: 10.3390/ma12101676.
doi: 10.3390/ma12101676 |
[39] |
BUSSCHER H J, VAN H C, SUBBIAHDOSS G, et al. Biomaterial-associated infection: locating the finish line in the race for the surface[J]. Science Translational Medicine, 2012,4(153). DOI: 10.1126/scitranslmed.3004528.
doi: 10.1126/scitranslmed.3004528 |
[40] |
TANDON A, SHAHZAD K, PATHAK S, et al. Parietex(TM) composite mesh versus Dyna-Mesh((R))-IPOM for laparoscopic incisional and ventral hernia repair: a retrospective cohort study[J]. Annals of the Royal College of Surgeons of England, 2016,98(8):568-573.
doi: 10.1308/rcsann.2016.0292 |
[41] | ZHANG T Z, ZHANG Z G, HU W J, et al. Preparation of poly(vinyl alcohol) modified polypropylene mesh and its antiadhesion efficacy in experimental hernia repair[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016,500:10-16. |
[42] |
HU M H, LIN X D, HUANG R K, et al. Lightweight, highly permeable, biocompatible, and antiadhesive composite meshes for intraperitoneal repairs[J]. Macromolecular Bioscience, 2018,18(7). DOI: 10.1002/mabi.201800067.
doi: 10.1002/mabi.201800067 |
[43] |
EMANS P, SCHREINEMACHER M, GIJBELS M, et al. Polypropylene meshes to prevent abdominal herniation. can stable coatings prevent adhesions in the long term?[J]. Annals of Biomedical Engineering, 2009,37(2):410-418.
doi: 10.1007/s10439-008-9608-7 |
[44] | HU W J, ZHANG Z G, ZHU L, et al. Combination of polypropylene mesh and in situ injectable mussel-inspired hydrogel in laparoscopic hernia repair for preventing post-surgical adhesions in the piglet model[J]. ACS Biomaterials Science & Engineering, 2020,6(3):1735-1743. |
[45] |
KONAR S, GUHA R, KUNDU B, et al. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion[J]. Hernia, 2017,21(1):125-137.
doi: 10.1007/s10029-016-1484-8 |
[46] | SEZER U A, SANKO V, GULMEZ M, et al. A polypropylene-integrated bilayer composite mesh with bactericidal and antiadhesive efficiency for hernia operations[J]. ACS Biomaterials Science & Engineering, 2017,3(12):3662-3674. |
[47] | SEZER U A, SANKO V, GULMEZ M, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019,99:1141-1152. |
[48] |
YANG D C, SONG Z C, SHEN J L, et al. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model[J]. Artificial Cells Nanomedicine and Biotechnology, 2020,48(1):425-434.
doi: 10.1080/21691401.2019.1709858 |
[49] |
BLAZQUEZ R, SANCHEZ-MARGALLO F M, ALVAREZ V, et al. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization[J]. Acta Biomaterialia, 2016,31:221-230.
doi: 10.1016/j.actbio.2015.11.057 |
[50] |
BLAZQUEZ R, SANCHEZ-MARGALLO F M, ALVAREZ V, et al. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia[J]. Acta Biomaterialia, 2018,71:318-329.
doi: 10.1016/j.actbio.2018.02.014 |
[51] | 张方捷, 高国栋, 叶静, 等. 脂肪干细胞覆膜聚丙烯补片减轻疝修补术后炎症反应的研究[J]. 浙江中西医结合杂志, 2017,27(3):180-183. |
ZHANG Fangjie, GAO Guodong, YE Jing, et al. Effect of adipose-derived stem cells coated polypropylene patch on the inflammation after herniorrhaphy[J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2017,27(3):180-183. | |
[52] |
DENG Y, REN J, CHEN G, et al. Evaluation of polypropylene mesh coated with biological hydrogels for temporary closure of open abdomen[J]. Journal of Biomaterials Applications, 2016,31(2):302-314.
doi: 10.1177/0885328216645950 |
[53] |
LO T, LIN Y H, YUSOFF F M, et al. The immunohistochemical and urodynamic evaluation towards the collagen-coated and non-coated polypropylene meshes implanted in the pelvic wall of the rats[J]. Scientific Reports, 2016,6(1):1-9.
doi: 10.1038/s41598-016-0001-8 |
[54] |
ACKERMANN M, WANG X, WANG S, et al. Collagen-inducing biologization of prosthetic material for hernia repair: polypropylene meshes coated with polyP/collagen[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017,106(6):2109-2121.
doi: 10.1002/jbm.b.v106.6 |
[55] |
QIAO Y S, ZHANG Q, WANG Q, et al. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects[J]. Acta Biomaterialia, 2021,128:277-290.
doi: 10.1016/j.actbio.2021.04.013 |
[56] | QIAO Y S, ZHANG Q, WANG Q, et al. Synergistic anti-inflammatory coating "zipped up" on polypropylene hernia mesh[J]. ACS Applied Materials & Interfaces, 2021,13(30):35456-35468. |
[57] |
COINDRE V F, CARLETON M M, SEFTON M V. Methacrylic acid copolymer coating enhances constructive remodeling of polypropylene mesh by increasing the vascular response[J]. Advanced Healthcare Materials, 2019,8(18). DOI: 10.1002/adhm.201900667.
doi: 10.1002/adhm.201900667 |
[58] |
PRUDENTE A, FAVARO W J, REIS L O, et al. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis[J]. International Urology and Nephrology, 2017,49(4):597-605.
doi: 10.1007/s11255-017-1520-3 |
[59] |
KARABULUT A, SIMAVLI S A, ABBAN G M, et al. Tissue reaction to urogynecologic meshes: effect of steroid soaking in two different mesh models[J]. International Urogynecology Journal, 2016,27(10):1583-1589.
doi: 10.1007/s00192-016-3013-9 |
[60] |
GIL D, REX J, COBB W, et al. Anti-inflammatory coatings of hernia repair meshes: a pilot study[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018,106(2):589-597.
doi: 10.1002/jbm.b.v106.2 |
[61] |
HACHIM D, LOPRESTI S T, YATES C C, et al. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration[J]. Biomaterials, 2017,112:95-107.
doi: 10.1016/j.biomaterials.2016.10.019 |
[62] |
DU S P, GARCIA A G, VERGES J, et al. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate[J]. Journal of Cellular and Molecular Medicine, 2009,13(8A):1451-1463.
doi: 10.1111/j.1582-4934.2009.00826.x |
[63] |
VENAULT A, CHANG Y. Designs of zwitterionic interfaces and membranes[J]. Langmuir, 2018,35(5):1714-1726.
doi: 10.1021/acs.langmuir.8b00562 |
[1] | 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23. |
[2] | 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43. |
[3] | 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16. |
[4] | 卢俊, 管晓宁, 林婧, 劳继红, 王富军, 李彦, 王璐. 人工韧带疲劳测试装置设计及其耐疲劳性能评价[J]. 纺织学报, 2021, 42(11): 71-76. |
[5] | 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89. |
[6] | 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184. |
[7] | 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73. |
[8] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[9] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[10] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[11] | 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72. |
[12] | 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72. |
[13] | 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177. |
[14] | 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166. |
[15] | 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(09): 191-200. |
|