纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 160-167.doi: 10.13475/j.fzxb.20210402708

• 机械与器材 • 上一篇    下一篇

机器人智能关节驱控结构一体化设计方法研究

莫帅1,2(), 周长鹏1, 李旭1, 杨振宁1, 刘辉华3, 高瀚君4   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
    3.东莞市德晟智能科技有限公司, 广东 东莞 523000
    4.北京航空航天大学虚拟现实技术与系统国家重点实验室, 北京 100191
  • 收稿日期:2021-04-09 修回日期:2021-10-11 出版日期:2022-03-15 发布日期:2022-03-29
  • 作者简介:莫帅(1987—),男,副教授,博士。主要研究方向为现代纺织装备。E-mail: moshuai2010@163.com
  • 基金资助:
    国家自然科学基金项目(51805368);中国科协青年人才托举工程项目(2018QNRC001);中国纺织工业联合会应用基础研究项目(J201806)

Research on integrated design method of robot intelligent joint drive and control structure

MO Shuai1,2(), ZHOU Changpeng1, LI Xu1, YANG Zhenning1, LIU Huihua3, GAO Hanjun4   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Modern Electromechanical Equipment Technology, Tianjin 300387, China
    3. Dongguan Desheng Intelligent Technology Co., Ltd., Dongguan, Guangdong 523000, China
    4. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
  • Received:2021-04-09 Revised:2021-10-11 Published:2022-03-15 Online:2022-03-29

摘要:

为减少纺织机器人所占空间并提高其控制性能,研制了一款用于落纱理管的新型纺织机器人腰部关节。采用有刷电动机为动力源,以STM32F103T8U6为主控芯片,以L9110S为驱动芯片,利用磁编码器AS5600与安装在输出轴末端的磁铁产生霍尔效应,实现腰部关节速度、位置的检测;通过对比单速度闭环控制和转速、电流双闭环系统,在控制算法上采用转速、电流双闭环比例积分(PI)控制系统进行调速;采用控制器局域网络(CAN)总线通信,以减少多关节布线的复杂程度。结果表明,所设计的机器人关节能有效减小体积,体现微型化设计,且使用范围更广泛,双闭环控制系统达到稳态的时间比单闭环控制缩短了30%。

关键词: 纺织机器人, 机器人腰部关节, 有刷电动机, 双闭环控制, CAN总线

Abstract:

In order to reduce the space occupied by textile robot and to improve its control performance, a new type of textile robot waist joint used for doffing management was designed, which used a brushed DC motor as the power source, STM32F103T8U6 as the main control chip, and L9110S as the driving chip. The magnetic encoder AS5600 and a magnet installed at the end of the output shaft was used together to generate the Hall effect to facilitate the speed and position detection of the robot joint. By comparing the corresponding speed and current of the single-speed closed-loop control with that of the double closed-loop control, this research adopted the speed and current double closed-loop proportional integral (PI) control system for speed regulation in the control algorithm, and the controller area network (CAN) bus method was used to achieve signal transmission so as to reduce the complexity of multi-joint wiring. The experimental results show that the designed robot can effectively reduce the joint volume with the miniaturization design, and has a wider range of use. Compared with the single closed-loop control system, the double closed-loop control system shortens the steady-state time by 30%.

Key words: textile robot, robot waist joint, brushed DC motor, double closed-loop control, CAN bus

中图分类号: 

  • TP242

图1

机器人腰部关节设计流程图"

图2

硬件系统框图"

图3

电流采集模块电路图"

图4

控制程序流程图"

表1

电动机参数"

参数 数值 参数 数值
额定电压/V 7.4 反电动势系数/
(V·s·rad-1)
0.019 3
额定电流/mA 400 电磁时间常数/ms 2.516
额定转速/
(r·min-1)
17 600 机电时间常数/ms 15.1
电枢电阻/Ω 0.368

图5

机器人腰部驱动关节"

图6

驱动板集成电路图"

图7

机器人腰部关节实物图"

图8

实验硬件连接图"

图9

额定工况下不同控制方案电动机响应"

图10

不同转速下电动机响应"

[1] 谭民, 王硕. 机器人技术研究进展[J]. 自动化学报, 2013,39(7):963-972.
TAN Min, WANG Shuo. Research progress in robotics[J]. Acta Automatica Sinica, 2013,39(7):963-972.
doi: 10.3724/SP.J.1004.2013.00963
[2] 高峰, 郭为忠. 中国机器人的发展战略思考[J]. 机械工程学报, 2016,52(7):1-5.
GAO Feng, GUO Weizhong. Thinking of the development strategy of robots in china[J]. Journal of Mechanical Engineering, 2016,52(7):1-5.
[3] OUYANG P R, ACOB J, PANO V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics and Computer-Integrated Manufacturing, 2014,30(2):189-200.
doi: 10.1016/j.rcim.2013.09.009
[4] XIAO B, YIN S, KAYNAK O. Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics[J]. IEEE Transactions on Industrial Informatics, 2016,63(10):6439-6449.
[5] GALICKI M. Finite-time trajectory tracking control in a task space of robotic manipulators[J]. Automatica, 2016,67:165-170.
doi: 10.1016/j.automatica.2016.01.025
[6] 杨思成, 张文增, 曹立国, 新型鼠笼式落纱机器人的研制[J]. 机械传动, 2017,41(12):138-145.
YANG Sicheng, ZHANG Wenzeng, CAO Liguo. Development of a novel squirrel-cage doffing robot[J]. Mechanical Drive, 2017,41(12):138-145.
[7] 顾万里, 胡云峰, 张森, 等. 有刷直流电动机自适应滑膜控制器设计与实验[J]. 西安交通大学学报, 2017,51(9):112-117.
GU Wanli, HU Yunfeng, ZHANG Sen, et al. Design and experiments on the adaptive sliding mode controller of brushed DC motor[J]. Journal of Xi'an Jiaotong University, 2017,51(9):112-117.
[8] 李宗俐, 许芳, 梁頔男, 等. 有刷直流电动机约束预测控制器设计及实现[J]. 吉林大学学报(信息科学版), 2017,35(4):363-369.
LI Zongli, XU Fang, LIANG Dinan, et al. Design and implementation of constraint predictive controller for brushed DC motor[J]. Journal of Jilin Univer-sity (Information Science), 2017,35(4):363-369.
[9] CHEN Z Y, LIU Y, HE W, et al. Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints[J]. IEEE Transactions on Industrial Electronics, 2021,68(6):5057-5067.
doi: 10.1109/TIE.41
[10] ZHAO X W, TAO B, QIAN L, et al. Model-based actor-critic learning for optimal tracking control of robots with input saturation[J]. IEEE Transactions on Industrial Electronics, 2021,68(6):5046-5056.
doi: 10.1109/TIE.41
[11] ZHANG Lin, TIAN Wei, ZHENG Faying, et al. Accuracy compensation technology of closed-loop feedback of industrial robot joints[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020,37(6):858-871.
[12] ZHOU J Y, HE R X, WANG Y, et al. Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization[J]. IEEE Robotics and Automation Letters, 2021,6(2):439-446.
doi: 10.1109/LSP.2016.
[13] 陈光荣, 郭盛, 侯博文, 等. 基于扩展雅可比矩阵的冗余液压驱动四足机器人运动控制[J]. 控制理论与应用, 2021,38(2):213-223.
CHEN Guangrong, GUO Sheng, HOU Bowen, et al. Motion control of a redundant hydraulically actuated quadruped robot based on extended Jacobian matrix[J]. Control Theory and Applications, 2021,38(2):213-223.
[14] 吴柳波, 李欣荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021,42(4):191-200.
WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction[J]. Journal of Textile Research, 2021,42(4):191-200.
[15] 周虎, 刘涛, 高金杰, 等. 手工地毯植绒机轨迹规划及其速度控制优化[J]. 纺织学报, 2019,40(10):177-182.
ZHOU Hu, LIU Tao, GAO Jinjie, et al. Planning of trajectory and optimization of speed control of hand-made tufting machine[J]. Journal of Textile Research, 2019,40(10):177-182.
[16] 孟瑶, 李晓娟, 关永, 等. 机器人关节通信总线系统的建模与验证[J]. 软件学报, 2018,29(6):1699-1715.
MENG Yao, LI Xiaojuan, GUAN Yong, et al. Modeling and verification for robot joint bus communication system[J]. Journal of Software, 2018,29(6):1699-1715.
[17] SOUNDIRARRAJAN N, SRINIVASAN K. Performance evaluation of ant lion optimizer-based PID controller for speed control of PMSM[J]. Journal of Testing and Evaluation, 2021,49(2):1104-1118.
[18] YEAM T, LEE D C. Design of sliding-mode speed controller with active damping control for single-inverter dual-pmsm drive systems[J]. IEEE Transactions on Power Electronics, 2021,36(5):5794-5801.
doi: 10.1109/TPEL.63
[19] PETRIC I Z, VUKOSAVIC S N, DEGANO M, et al. A digital internal model current controller for salient machines[J]. IEEE Transactions on Industrial Electronics, 2021,68(6):4703-4717.
doi: 10.1109/TIE.41
[20] MO Shuai, LI Xu, YANG Zhenning, et al. Integrated design of brushless motor drive and control system for robot joints[J]. Journal of Central South University, 2021,28(12):1-11.
doi: 10.1007/s11771-020-4504-x
[1] 戴宁, 胡旭东, 彭来湖, 钟垚森. 无缝内衣机密度电动机的控制技术[J]. 纺织学报, 2020, 41(06): 161-167.
[2] 张成俊 左小艳 张弛 吴晓光. 采用网络控制的电脑横机CAN总线调度仿真[J]. 纺织学报, 2016, 37(08): 154-159.
[3] 胡旭东 黄肖华 彭来湖. 内嵌驱动针织机械密度调节装置的研制[J]. 纺织学报, 2015, 36(07): 131-135.
[4] 胡旭东 黄栋明 彭来湖. 超多机头绣花机自动换底线系统设计[J]. 纺织学报, 2015, 36(04): 134-139.
[5] 吴朝阳;苏俊;陈淑侠;芮延年. HR-I电子提花机控制器的设计[J]. 纺织学报, 2010, 31(3): 115-118.
[6] 金玉珍;吴震宇;武传宇;韩涛;胡旭东;朱祖超. 基于CAN总线喷气织机控制系统的研制[J]. 纺织学报, 2009, 30(02): 117-120.
[7] 刘桂英;周琴;欧阳三泰. 针织热定形机变频调速同步控制的设计[J]. 纺织学报, 2008, 29(3): 118-121.
[8] 赵斌. 基于CAN总线的粗纱机控制系统[J]. 纺织学报, 2006, 27(5): 84-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!