纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 168-175.doi: 10.13475/j.fzxb.20210203109

• 机械与器材 • 上一篇    下一篇

气动折入边装置中纱线初始位置对折边效果的影响

刘宜胜1(), 周鑫磊1, 刘丹丹2,3   

  1. 1.浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
    2.浙江大学 生物医学工程与仪器科学学院, 浙江 杭州 310027
    3.浙江众合科技股份有限公司 中央研究院, 浙江 杭州 310051
  • 收稿日期:2021-02-15 修回日期:2021-06-22 出版日期:2022-03-15 发布日期:2022-03-29
  • 作者简介:刘宜胜(1979—),男,副教授,博士。主要研究方向为智能纺织装备。E-mail: lysleo@zstu.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LY18E050018)

Effect of yarn's initial position on yarn tucked-in in pneumatic tucked-in selvedge apparatus

LIU Yisheng1(), ZHOU Xinlei1, LIU Dandan2,3   

  1. 1. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
    3. Academia Sinica, United Science & Technology Co., Ltd., Hangzhou, Zhejiang 310051, China
  • Received:2021-02-15 Revised:2021-06-22 Published:2022-03-15 Online:2022-03-29

摘要:

为改进气动折入边装置的结构设计,提高纱线的折入效率和稳定性,采用数值模拟和实验相结合的方法,探究纱线初始位置对纱线折入的影响机制。基于单向流固弱耦合算法提出了适用于模拟纱线从斜吹到折入行为的数值模型,探究一端固定另一端自由的单根纱线在不同初始位置先后受斜吹和折入气流作用的运动规律。搭建可视化实验平台,通过高速摄像机记录纱线的运动行为。通过数值模拟结果和实验数据进行比较,验证了单向流固弱耦合算法的准确性。结果表明:纱线折入所需的时间和伸长量与其初始位置有关,折入效果与其初始纵坐标有关;不同初始位置的纱线均能在7.425 ms内完成折入。

关键词: 气动折入边装置, 斜吹气流, 纱线折入, 折入气流, 流固耦合, 数值模拟

Abstract:

In order to improve the structural design of the pneumatic tucked-in selvedge apparatus and increase the yarn tucked-in efficiency and stability, a combination of numerical simulation and experiment is used to explore the mechanism of the yarn's initial position on the yarn tucked-in. Based on the one-way weak fluid-structure interaction algorithm, a numerical model suitable for simulating the behavior of a yarn from oblique-blowing to tucked-in is proposed and the movement of a single yarn with one end fixed and the other free end in different initial positions being subjected to oblique-blowing and tucked-in sequence is explored. A visual experimental bench was built to record the movement of the yarn through a high-speed camera. By comparing the results of numerical simulation with experimental data, the accuracy of the one-way weak fluid-structure interaction algorithm is verified. The results show that: the time and the elongation of the yarn tucked-in are related to its initial position, and the tucked-in effect of the yarn is related to its initial ordinate. The yarns in different initial positions can all tucked-in within 7.425 ms.

Key words: pneumatic tucked-in selvedge apparatus, oblique-blowing, yarn tucked-in, folding-in airflow, fluid-structure interaction, numerical simulation

中图分类号: 

  • TS183.92

图1

折入和斜吹三维气流场流体模型"

图2

实验平台工作原理图"

图3

管道坐标图"

图4

气流场的速度和静压力分布云图"

图5

速度和压力与位移关系图"

图6

气流场中不同时间步下纱线的斜吹运动状态"

表1

不同时间步下纱线的伸长量和X坐标为0.012 5 m的梁单元节点所受气动力情况"

组别 时间/ms 伸长量/mm 气动力/kN
A 0 0 3.57
1 0.171 3.37
2 0.375 1.44
2.725 0.696
B 0 0 3.57
1 0.107 3.23
2 0.270 3.20
3 0.462 2.60
3.5 0.762
C 0 0 3.57
1 0.014 3.52
2 0.041 3.46
3 0.087 3.41
4 0.191 3.35
5 0.364 3.17
5.925 0.752
D 0 0 3.76
1 0.103 3.30
2 0.264 3.28
3 0.452 2.62
3.562 5 0.760
E 0 0 3.52
1 0.109 3.14
2 0.274 3.10
3 0.468 2.53
3.475 0.764

图7

气流场中不同时间步下纱线的折入运动状态"

表2

不同时间步下纱线的伸长量和Y坐标为0.013 95 m的梁单元节点所受气动力情况"

组别 时间/ms 伸长量/mm 气动力/kN
A 0 0 1.67
0.5 0.201 1.60
1 0.493 1.92
1.5 1.037
1.525 1.068
B 0 0 1.64
0.5 0.158 1.64
1 0.366 1.61
1.5 0.834
1.562 5 0.905
C 0 0 1.49
0.5 0.154 1.05
1 0.361 1.24
1.5 0.754
D 0 0 1.61
0.5 0.230 0.79
1 0.419
1.225 0.521
E 0 0 1.64
0.5 0.153 1.65
1 0.361 1.69
1.5 0.722 2.25
1.887 5 1.132

图8

实验中纱线的折入轨迹"

表3

纱线的总伸长量情况"

组别 数值模拟
总时间/ms
数值模拟总
伸长量/mm
实验总伸
长量/mm
数值模拟
总伸长比/%
实验总
伸长比/%
A 4.25 1.764 1.86 17.64 18.6
B 5.062 5 1.665 1.77 16.65 17.7
C 7.425 1.506 1.62 15.06 16.2
D 4.787 5 1.281 1.38 12.81 13.8
E 5.362 5 1.896 2.00 18.96 20.0

图9

3点的数值模拟和实验结果运动轨迹图"

[1] 秦贞俊. 从历届ITMA看无梭织机的发展[J]. 纺织导报, 2004(3):3-15,108.
QIN Zhenjun. An observation on the development of shuttle-less looms by reviewing previous sessions of ITMA[J]. China Textile Leader, 2004(3):3-15,108.
[2] 梅自强. 国内外织造技术的现状和展望[J]. 南通纺织职业技术学院学报, 2004,4(1):1-5.
MEI Ziqiang. The current situation and prospect of weave technology both at home and abroad[J]. Journal of Nantong Textile Vocational Technology College, 2004,4(1):1-5.
[3] 夏旭文, 张萍, 周新科, 等. 新型织机毛边的经济性分析[J]. 辽宁丝绸, 2017, 4(3): 21, 31.
XIA Xuwen, ZHANG Ping, ZHOU Xinke, et al. Economic analysis of new loom's burrs[J]. Liaoning Tussah Silk, 2017, 4(3): 21, 31.
[4] 刘宜胜, 裘燚斌, 吴震宇. 气动折入装置异向射流场中纱线的运动规律[J]. 纺织学报, 2018,39(7):122-129.
LIU Yisheng, QIU Yibin, WU Zhenyu. Movement rule of yarn in incongruous jet flow with pure pneumatic tucker[J]. Journal of Textile Research, 2018,39(7):122-129.
[5] 李小明, 周香琴, 周巧燕. 折入边装置钩针驱动机构的分析与优化[J]. 浙江理工大学学报(自然科学版), 2015,33(5):356-359.
LI Xiaoming, ZHOU Xiangqin, ZHOU Qiaoyan. Analysis and optimization of crochet hook driving mechanism in tuck-in selvedge device[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2015,33(5):356-359.
[6] 宋日升, 马庆峰, 仲伟松, 等. 一种气动折入边装置: 201620397607.2[P]. 2016-09-07.
SONG Risheng, MA Qingfeng, ZHONG Weisong, et al. A pneumatic tucked-in device: 201620397607.2[P]. 2016-09-07.
[7] GUO Huifen, CHEN Zhiyong, YU Chongwen. Numerical study of an air-jet spinning nozzle with a slotting-tube[J]. Journal of Physics: Conference Series, 2008,96:1-5.
[8] SHIH T H, LIOU W W, SHABBIR A, et al. A new κ-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers Fluids, 1995,24(3):227-238.
doi: 10.1016/0045-7930(94)00032-T
[9] HASSANA A H A, ROLA S A, AHMED H H, et al. Numerical and experimental study of the influence of nozzle flow parameters on yarn production by jet-ring spinning[J]. Alexandria Engineering Journal, 2018(57):2975-2989.
[10] JONATHAN M Kaldor, DOUG L James, STEVE Marschner. Simulating knitted cloth at the yarn level[J]. ACM Trans, 2008,27(3):1-9.
[11] OSMAN A, DELCOUR L, HERTENS I, et al. Numerical and experimental study on the joint forming mechanism in the pneumatic splicing process[J]. Textile Research Journal, 2019,89(21/22):4512-4525.
doi: 10.1177/0040517519837731
[12] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020,41(7):72-77.
LIU Yisheng, XU Guangyi. Effect of incident angle of airflow on weft yarn tucking in shuttleless weaving[J]. Journal of Textile Research, 2020,41(7):72-77.
[1] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[2] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[3] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[4] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[5] 张思宇, 余莉, 贾贺, 刘鑫. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(07): 108-114.
[6] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[7] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[8] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
[9] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[10] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[11] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[12] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[13] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[14] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[15] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!