纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 17-23.doi: 10.13475/j.fzxb.20211104607

• 特约专栏:生物医用纺织品 • 上一篇    下一篇

螺旋型人工血管内的血流动力学数值模拟

李田华1, 李晶晶2, 张克勤1,3, 赵荟菁1,3, 孟凯1,3()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 心血管病研究所, 江苏 苏州 215021
    3.现代丝绸国家工程实验室(苏州), 江苏 苏州 215123
  • 收稿日期:2021-11-07 修回日期:2021-12-30 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 孟凯
  • 作者简介:李田华(1996—),女,硕士生。主要研究方向为人工血管的设计与制备。
  • 基金资助:
    江苏省高等学校自然科学研究重大项目(19KJA610004);江苏省高等学校自然科学研究重大项目(17KJA540002)

Numerical simulation of hemodynamics in spiral artificial blood vessel

LI Tianhua1, LI Jingjing2, ZHANG Keqin1,3, ZHAO Huijing1,3, MENG Kai1,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Institute of Cardiovascular Diseases, Soochow University, Suzhou, Jiangsu 215021, China
    3. National Engineering Laboratory for Modern Silk (Suzhou), Suzhou, Jiangsu 215123, China
  • Received:2021-11-07 Revised:2021-12-30 Published:2022-03-15 Online:2022-03-29
  • Contact: MENG Kai

摘要:

针对过低的壁面剪切应力(WSS)会引起小口径人工血管移植后发生再狭窄的问题,探讨了旋动流对WSS 等血流动力学因素的影响,构建了螺旋型人工血管与宿主血管的端侧吻合模型,通过有限元数值模拟证实了旋动流的形成,并探讨了吻合角、螺旋半径、螺距等参数对模型脚趾处(易发内膜增生部位)WSS 的影响。结果表明:吻合角较小(30°)时,1个周期内的时均壁面剪切应力(TAWSS)最低值为1.2 Pa,高于吻合角为45°和60°时的0.3和0.4 Pa;螺旋半径分别为1.0、1.5、2.0 mm 时,TAWSS最低值分别为 0.69、0.68、1.06 Pa,较大螺旋半径对提升WSS更有利;螺距从96 mm逐步降低为48、32 mm时,TAWSS最低值从0.77 Pa逐步提升到1.06、1.30 Pa,螺距较小时TAWSS最低值相对较高。

关键词: 医用纺织品, 人工血管, 螺旋型血管, 旋动流, 壁面剪切应力, 血管移植

Abstract:

Low wall shear stress (WSS) is one of the mechanical causes for restenosis after vascular transplantation. In order to investigate the effect of swirling flow on hemodynamics such as WSS, an end-to-side anastomotic model between the spiral artificial blood vessel and the host vessel was constructed. The formation of swirling flow was confirmed by finite element numerical simulation, and the effects of anastomotic angle, spiral radius and pitch on WSS in the toe of the model (an area prone to intimal hyperplasia) were discussed. The results show that the lowest value of the time average wall shear stress (TAWSS) in a cardiac cycle is 1.2 Pa when the anastomotic angle is 30°, which are higher than the values of 0.3 Pa (45°) and 0.4 Pa (60°) respectively. When the spiral radius is 1.0, 1.5 and 2.0 mm, the corresponding minimum TAWSS is 0.69, 0.68 and 1.06 Pa respectively, which shows larger spiral radius is more favorable to improve the WSS. When the pitch gradually decreases from 96 mm to 48 and 32 mm, the minimum TAWSS gradually increases from 0.77 Pa to 1.06 and 1.30 Pa. It shows that when the pitch is small, the minimum TAWSS is high.

Key words: medical textiles, artificial blood vessel, spiral blood vessel, swirling flow, wall shear stress, vascular transplantation

中图分类号: 

  • TS101.2

图1

螺旋型血管的形状示意图"

图2

端侧吻合模型示意图"

表1

模型的几何参数值"

血管
直径
D/mm
直管
长度
H/mm
宿主血管
长度Ls/
mm
螺旋型血
管长度
Lx/mm
螺旋半径
Rx/mm
螺距
L/mm
吻合角/
(°)
4 8 80 64 1.0、1.5、2.0 96、48、32 30、45、60

图3

脉动速度曲线"

图4

速度场流线图(t=164 ms)"

图5

血管模型横截面切向速度场(t=164 ms)"

图6

zx坐标面上的血流速度分布(t=164 ms)"

图7

2种血管模型的WSS分布(t=164 ms)"

图8

脚趾线上TAWSS的变化曲线"

图9

不同吻合角时螺旋型血管模型的WSS分布(t=164 ms)"

图10

不同吻合角时脚趾线上的TAWSS变化曲线"

图11

不同螺旋半径时血管模型的WSS分布(t=164 ms)"

图12

不同螺旋半径时脚趾线上的TAWSS变化曲线"

图13

不同螺距时血管模型的WSS分布(t=164 ms)"

图14

不同螺距时脚趾线上的TAWSS变化曲线"

[1] WOUK J, DEKKER RFH, QUEIROZ EAIF, et al. β-glucans as a panacea for a healthy heart? their roles in preventing and treating cardiovascular diseases[J]. International Journal Biological Macromolecules, 2021,177:176-203.
doi: 10.1016/j.ijbiomac.2021.02.087
[2] 夏克尔·赛塔尔, 李超婧, 邹婷, 等. 人工血管的发展现状及趋势展望[J]. 产业用纺织品, 2019,37(3):1-5.
XIAKEER Saitaer, LI Chaojing, ZOU Ting, et al. Development status and trend of the artificial blood vessel[J]. Technical Textiles, 2019,37(3):1-5.
[3] 张家庆, 王武军, 闫玉生. 小口径人工血管材料应用进展[J]. 实用医学杂志, 2014,30(21):3520-3521.
ZHANG Jiaqing, WANG Wujun, YAN Yusheng. Application progress of small caliber artificial blood vessel materials[J]. Journal of Practical Medicine, 2014,30(21):3520-3521.
[4] CARO C G, CHESHIRE N J, WATKINS N. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs[J]. Journal of The Royal Society Interface, 2005,2(3):261-266.
doi: 10.1098/rsif.2005.0044
[5] 孙安强, 邓小燕. 一种螺旋型非圆形截面小口径人造血管内流场的计算机数值模拟[C]//2008年全国生物流变学与生物力学学术会议论文摘要集. 大连:中国生物物理学会, 2008:128-129.
SUN Anqiang, DENG Xiaoyan. Computer numerical simulation of the flow field in a spiral non-circular section small caliber artificial vessel[C]//Abstracts of the 2008 National Academic Conference on biorheology and biomechanics.Dalian :Biophysical Society of China, 2008:128-129.
[6] KOKKALIS E, HOSKINS P R, CORNER G A, et al. Vector doppler imaging and secondary flow patterns in vascular prostheses[C]//2012 IEEE International Ultrasonics Symposium. New Jersey:Institute of Electrical and Electronics Engineers, 2012:1-4.
[7] 张治国, 樊瑜波, 邓小燕, 等. 一种带有旋动流引导器的新型小口径人工血管流场的数值模拟[J]. 中国科学(C辑:生命科学), 2008(9):807-815.
ZHANG Zhiguo, FAN Yubo, DENG Xiaoyan, et al. Numerical simulation of flow field of a new small caliber artificial blood vessel with rotating flow guide[J]. Chinese Science (Series C: Life Science), 2008 (9):807-815.
[8] ZHENG TINGHUI, FAN YUBO, YAN XIONG, et al. Hemodynamic performance study on small diameter helical grafts[J]. ASAIO Journal, 2009,55(3):192-199.
doi: 10.1097/MAT.0b013e31819b34f2
[9] COOKSON A N, DOORLY D J, SHERWIN S J . Mixing through stirring of steady flow in small amplitude helical tubes[J]. Annals of Biomedical Engineering, 2009,37(4):710-721.
doi: 10.1007/s10439-009-9636-y
[10] HOJIN HA, DONGHA HWANG, WOO-RAK CHOI, et al. Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow[J]. Plos One, 2014,9(10):111047.
[11] NGUYEN K T, CLARK C D, CHANCELLOR T J, et al. Carotid geometry effects on blood flow and on risk for vascular disease[J]. Journal of Biomechanics, 2008,41(1):11-19.
[12] KILNER P J, YANG G Z, MOHIADDIN R H, et al. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping[J]. Circulation, 1993,88:2235-2247.
doi: 10.1161/01.CIR.88.5.2235
[13] 赵伟. 血液旋动流预防血管搭桥术后内膜增生的研究[D]. 贵阳:贵州大学, 2010:16-18.
ZHAO Wei. Study on the prevention of intimal hyperplasia after vascular bypass grafting by blood swirling flow[D]. Guiyang: Guizhou University, 2010:16-18.
[14] 徐在品, 赵伟, 孙安强, 等. 犬不同血管搭桥方法及搭桥血管内流场的计算机数值模拟[J]. 中国比较医学杂志, 2010,20(Z1):142-147.
XU Zaiping, ZHAO Wei, SUN Anqiang, et al. Computer numerical simulation of different vascular bypass methods and intravascular flow field in dogs[J]. Chinese Journal of Comparative Medicine, 2010,20(Z1):142-147.
[15] OWIDA A A, DO H, MORSI Y S. Numerical analysis of coronary artery bypass grafts: an over view[J]. Computer Methods and Programs in Biomedicine, 2012,108(2):689-705.
doi: 10.1016/j.cmpb.2011.12.005
[1] 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7.
[2] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[3] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[4] 卢俊, 管晓宁, 林婧, 劳继红, 王富军, 李彦, 王璐. 人工韧带疲劳测试装置设计及其耐疲劳性能评价[J]. 纺织学报, 2021, 42(11): 71-76.
[5] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[6] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[7] 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73.
[8] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[9] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[10] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[11] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
[12] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[13] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[14] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[15] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(09): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!