纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 117-123.doi: 10.13475/j.fzxb.20210202407

• 染整与化学品 • 上一篇    下一篇

还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能

谢梦玉1, 胡啸林1, 李星2, 瞿建刚1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.鄂尔多斯羊绒制品股份有限公司, 内蒙古 鄂尔多斯 017000
  • 收稿日期:2021-02-06 修回日期:2021-09-13 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 瞿建刚
  • 作者简介:谢梦玉(1995—),女,硕士生。主要研究方向为功能纺织品的制备。
  • 基金资助:
    南通市基础科学研究项目(JC2019007);纺织面料技术教育部重点实验室开放基金项目(W201904)

Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite

XIE Mengyu1, HU Xiaolin1, LI Xing2, QU Jian'gang1,2()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Erdos Cashmere Products Co., Ltd., Erdos, Inner Mongolia 017000, China
  • Received:2021-02-06 Revised:2021-09-13 Published:2022-04-15 Online:2022-04-20
  • Contact: QU Jian'gang

摘要:

为制备便携、可重复使用和大规模生产的界面蒸发器,基于还原氧化石墨烯(RGO)和不同纺织品制备了RGO/粘胶多层复合材料。其中,RGO/粘胶织物作为太阳能吸收体,棉纱和棉织物作为供水通道,聚丙烯织物作为隔热材料。对RGO/粘胶织物的结构、亲水性能和光学性能进行分析,研究了RGO/粘胶多层复合材料的蒸发性能、循环稳定性及应用性能。结果表明:RGO与粘胶纤维发生了交联反应,水滴可在2.02 s完全渗透在RGO/粘胶织物中,RGO/粘胶织物在紫外-可见近红外光区域的光吸收率在90%左右;在1.0 kW/m2的光照下,隔热层厚度为 1.35 cm 时,RGO/粘胶多层复合材料的蒸发速率最大,是纯水蒸发速率的3.6倍;此外,RGO/粘胶多层复合材料具有良好的循环稳定性,使用10次后蒸发速率无明显变化,在染料废水处理方面具有良好的应用前景。

关键词: 还原氧化石墨烯, 粘胶, 光热转化, 界面蒸发, 染料废水处理

Abstract:

In order to prepare interfacial evaporator with portability, reusability and scalable manufacturability, reduced graphene oxide (RGO)/viscose multi-layer composite was fabricated, where the RGO/viscose fabric acts as solar absorber, cotton yarn and cotton fabric are used as water supply channel, and polypropylene fabric functions as thermal heat material. The structure, hydrophilic properties and optical properties of the RGO/viscose fabric were analyzed, and the evaporation properties, cyclic stability and application performance of the RGO/viscose multi-layer composite were studied. The results show that RGO is cross-linked with viscose fibers. The water droplets completely permeate into the RGO/viscose fabric in 2.02 s. The absorbance of RGO/viscose fabric is about 90% in the ultraviolet-visible near infrared region. When the thickness of insulation layer is 1.35 cm, the evaporation rate of the RGO/viscose multi-layer composite is the highest under 1.0 kW/m2 solar irradiation, which is 3.6 times as high as that of pure water. Furthermore, the RGO/viscose multi-layer composite has good cyclic stability as the evaporation rate remains constant after recycling 10 times, showing excellent potential application prospect for dye wastewater treatment.

Key words: reduced graphene oxide, viscose, photothermal conversion, interfacial evaporation, dye wastewater treatment

中图分类号: 

  • TB34

图1

RGO/粘胶多层复合材料界面蒸发示意图"

图2

收集装置示意图"

图3

不同织物的扫描电镜照片"

图4

粘胶织物、GO/粘胶织物和RGO/粘胶织物的红外光谱图"

图5

GO/粘胶织物和RGO/粘胶织物的XPS图"

表1

GO/粘胶织物和RGO/粘胶织物的C1s谱峰面积"

样品名称 化学键的相对面积/%
C—C C—O C=O
GO/粘胶织物 56.4 40.0 3.6
RGO/粘胶织物 59.3 30.4 10.3

图6

RGO/粘胶织物在不同时间下的水接触角"

图7

粘胶织物、GO/粘胶织物和RGO/粘胶织物的光学性能"

图8

隔热材料厚度对蒸发性能的影响"

图9

光照强度对RGO/粘胶多层复合材料蒸发性能的影响"

图10

RGO/粘胶多层复合材料10次循环的蒸发速率"

图11

不同染料溶液和蒸发收集水的紫外-可见光谱图"

[1] TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7
[2] NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519.
[3] POLITANO A, ARGURIO P, PROFIO G D, et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 2017, 29(2): 1603504.
doi: 10.1002/adma.201603504
[4] 刘捷, 仝胜录, 李小端, 等. 织物基载体在含盐废水蒸发处理中的应用[J]. 纺织学报, 2020, 41(8): 81-87.
LIU Jie, TONG Shenglu, LI Xiaoduan, et al. Application of textile in evaporation treatment of saline wastewater[J]. Journal of Textile Research, 2020, 41(8): 81-87.
[5] ZHU M M, YU J L, MA C L, et al. Carbonized daikon for high efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2019, 191: 83-90.
doi: 10.1016/j.solmat.2018.11.015
[6] LI H R, HE Y R, HU Y W, et al. Commercially available activated carbon fiber felt enables efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9362-9368.
[7] 李秀强. 基于低维碳材料的高效光热蒸汽转化研究[D]. 南京: 南京大学, 2018: 31-45.
LI Xiuqiang. Study on high efficient solar steam based on low dimensional carbon materials[D]. Nanjing: Nanjing University, 2018: 31-45.
[8] WANG X Z, HE Y R, LIU X, et al. Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films[J]. Powder Technology, 2017, 321: 276-285.
doi: 10.1016/j.powtec.2017.08.027
[9] CHEN C J, LI Y J, SONG J W, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials, 2017, 29(30): 1701756.
doi: 10.1002/adma.201701756
[10] LIU X, WANG X Z, HUANG J, et al. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid[J]. Applied Energy, 2018, 220: 302-312.
doi: 10.1016/j.apenergy.2018.03.097
[11] ZHOU X Y, ZHAO F, GUO Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-1992.
[12] 程珙. 石墨烯的制备及其在光驱动产蒸汽中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 43-58.
CHENG Gong. Preparation on graphene and its application on solar vapor generation[D]. Harbin: Harbin Institute of Technology, 2017: 43-58.
[13] 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9): 1-7.
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9): 1-7.
doi: 10.1177/004051757104100101
[1] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[2] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[3] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
[4] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[5] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[6] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[7] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10): 8-14.
[8] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[9] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[10] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[11] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[12] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[13] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[14] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[15] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!