纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 47-54.doi: 10.13475/j.fzxb.20210405508
马莹1, 刘岳岩1, 赵洋1,2, 陈翔1, 禄盛1,2(), 胡瀚杰3
MA Ying1, LIU Yueyan1, ZHAO Yang1,2, CHEN Xiang1, LU Sheng1,2(), HU Hanjie3
摘要:
为研究芳纶平纹织物纱线抽拔力学性能及各参数的影响规律,建立纱线抽拔数学模型,为后续数值模型提供理论基础。采用数字单元法模拟芳纶平纹织物织造过程,获得其微观几何模型,并计算得出纱线轮廓。在此基础上,使用ABAQUS模拟单纱抽拔过程,建立纱线厚度方向单层网格划分准则和纱线材料属性,获得横向预紧力、纱线间摩擦因数对纱线抽拔力学性能的影响规律及能量转换机制。结果表明:仿真所得抽拔力峰值和横向预紧力峰值与实验值仅差5.96%和-8.51%,外力做功主要通过摩擦耗散;随着横向预紧力和纱线间摩擦因数的增大,抽拔力峰值增长速度逐渐减缓,所建模型可较为准确地预测纱线抽拔性能。
中图分类号:
[1] | 练军, 顾伯洪, 王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8): 109-112. |
LIAN Jun, GU Bohong, WANG Shanyuan. Ballistic impact properties of the fabric and its composite laminates[J]. Journal of Textile Research, 2006, 27(8): 109-112. | |
[2] |
KIRKWOOD K M, KIRKWOOD J E, LEE Y S, et al. Yarn pull-out as a mechanism for dissipation of ballistic impact energy in Kevlar KM-2:part I: quasi-static characterization of yarn pull-out[J]. Textile Research Journal, 2004, 74(10): 920-928.
doi: 10.1177/004051750407401012 |
[3] |
KIRKWOOD J E, KIRKWOOD K M, LEE Y S, et al. Yarn pull-out as a mechanism for dissipation of ballistic impact energy in Kevlar KM-2 fabric:part II: prediction of ballistic performance[J]. Textile Research Journal, 2004, 74(11): 939-948.
doi: 10.1177/004051750407401101 |
[4] |
NILAKANTAN G, GILLESPIE J W. Yarn pull-out behavior of plain woven Kevlar fabrics: effect of yarn sizing,pull-out rate,and fabric pre-tension[J]. Composite Structures, 2013, 101(15): 215-224.
doi: 10.1016/j.compstruct.2013.02.018 |
[5] |
ZHU D J, SORANAKOM C, MOBASHER B, et al. Experimental study and modeling of single yarn pull-out behavior of Kevlar®49 fabric[J]. Composites Part A: Applied Science and Manufacturing, 2012, 42(7): 868-879.
doi: 10.1016/j.compositesa.2011.03.017 |
[6] | BAI R X, MA Y, LEI Z K, et al. Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 1-14. |
[7] |
DONG Z X, SUN C T. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(12): 1863-1869.
doi: 10.1016/j.compositesa.2009.04.019 |
[8] |
BILISIK K, KORKMAZ M. Multilayered and multidirectionally-stitched aramid woven fabric structures: experimental characterization of ballistic performance by considering the yarn pull-out test[J]. Textile Research Journal, 2010, 80(16): 1697-1720.
doi: 10.1177/0040517510365954 |
[9] |
BILISIK K, KORKMAZ M. Single and multiple yarn pull-outs on aramid woven fabric structures[J]. Textile Research Journal, 2010, 81(8): 847-864.
doi: 10.1177/0040517510391703 |
[10] |
BILISIK K. Properties of yarn pull-out in para-aramid fabric structure and analysis by statistical model[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 1930-1942.
doi: 10.1016/j.compositesa.2011.08.018 |
[11] |
BILISIK K, YOLACAN G. Single and multiple yarn pull-out on E-glass woven fabric structures[J]. Textile Research Journal, 2011, 81(19): 2043-2055.
doi: 10.1177/0040517511414976 |
[12] |
BILISIK K. Experimental determination of fabric shear by yarn pull-out method[J]. Textile Research Journal, 2011, 82(10):1050-1064.
doi: 10.1177/0040517511431318 |
[13] |
VALIZADEH M, LOMOV S. Finite element simulation of a yarn pullout test for plain woven fabrics[J]. Textile Research Journal, 2010, 80(10): 892-903.
doi: 10.1177/0040517509346436 |
[14] |
NILAKANTAN G. Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies[J]. Composite Structures, 2013, 104: 1-13.
doi: 10.1016/j.compstruct.2013.04.001 |
[15] |
SORBO P D, GIRARDOT J, DAU F, et al. Numerical investigations on a yarn structure at the microscale towards scale transition[J]. Composite Structures, 2018, 183: 489-498.
doi: 10.1016/j.compstruct.2017.05.018 |
[16] |
WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319.
doi: 10.1016/S0266-3538(00)00223-2 |
[17] |
ZHOU G, SUN X, WANG Y. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2): 239-244.
doi: 10.1016/S0266-3538(03)00258-6 |
[18] |
MIAO Y, ZHOU E, WANG Y, et al. Mechanics of textile composites: micro-geometry[J]. Composites Science and Technology, 2008, 68(7/8): 1671-1678.
doi: 10.1016/j.compscitech.2008.02.018 |
[19] |
HUANG L, WANG Y, MIAO Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures, 2013, 106(12): 417-425.
doi: 10.1016/j.compstruct.2013.05.057 |
[20] |
GREEN S D, LONG A C, SAID B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756.
doi: 10.1016/j.compstruct.2013.10.015 |
[21] |
ISART N, SAID B, IVANOV D, et al. Internal geometric modelling of 3D woven composites: a comparison between different approaches[J]. Composite Structures, 2015, 132: 1219-1230.
doi: 10.1016/j.compstruct.2015.07.007 |
[22] |
WANG Y, MIAO Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5): 552-560.
doi: 10.1016/j.ijimpeng.2009.10.009 |
[23] |
WANG Y, MIAO Y, HUANG L, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78.
doi: 10.1016/j.ijimpeng.2016.06.007 |
[24] |
ZHU D J, MOBASHER B, RAJAN S D. Dynamic tensile testing of Kevlar 49 fabrics[J]. Journal of Materials in Civil Engineering, 2010, 23(3): 230-239.
doi: 10.1061/(ASCE)MT.1943-5533.0000156 |
[25] | BAI R X, MA Y, LEI Z K, et al. Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test[J]. Composites Part B: Engineering, 2019, 174: 1-11. |
[26] |
GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements: 3D simulations versus biaxial tests[J]. Computation Materials Science, 2000, 17(1): 7-20.
doi: 10.1016/S0927-0256(99)00086-5 |
[1] | 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66. |
|