纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 33-39.doi: 10.13475/j.fzxb.20210500107
叶伟1,2, 余进1,2, 龙啸云1,2(), 孙启龙1,2, 马岩1,2
YE Wei1,2, YU Jin1,2, LONG Xiaoyun1,2(), SUN Qilong1,2, MA Yan1,2
摘要:
为开发具有电磁损耗的新型纤维状电磁波吸收材料,采用天然丝瓜络作为碳质纤维的基材,通过原位杂化将Fe3O4负载到纤维的表面和内部孔隙中。借助扫描电子显微镜、X射线光电子能谱仪、磁滞回线和电磁参数分析等对材料的结构和性能进行表征。结果表明:丝瓜络基碳材料具有特殊的中空结构,生成的Fe3O4颗粒在纤维表面和内部孔隙中均匀分布,介电损耗、磁损耗和纤维结构间的协同作用增强了材料的电磁波损耗;当FeCl3浓度为2 mol/L,处理温度为700 ℃时,在2~18 GHz范围内,厚度为3 mm的试样在9.97 GHz处的电磁波损耗达到了-24.37 dB,在7.33~10.33 GHz频段内电磁波损耗小于-10 dB。丝瓜纤维通过合适的炭化及磁性颗粒负载工艺,可制备出性能优异的电磁波吸收材料。
中图分类号:
[1] |
CHEN W, LI S, CHEN C, et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J]. Advanced Materials, 2011, 23(47): 5679-5683.
doi: 10.1002/adma.201102838 |
[2] |
BAO C, SONG L, XING W, et al. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. Journal of Materials Chemistry, 2012, 22(13): 6088-6096.
doi: 10.1039/c2jm16203b |
[3] |
BAI X, ZHAI Y, ZHANG Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. Journal of Physical Chemistry C, 2011, 115(23): 11673-11677.
doi: 10.1021/jp202475m |
[4] | PENG F, MENG F, GUO Y, et al. Intercalating hybrids of sandwich-like Fe3O4-graphite: synthesis and their synergistic enhancement of microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16744-16753. |
[5] |
PRASAD J, SINGH A K, TOMAR M, et al. Strong electromagnetic wave absorption and microwave shielding in the Ni-Cu@MoS2/rGO composite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18666-18677.
doi: 10.1007/s10854-019-02219-7 |
[6] |
HE P, HOU Z L, ZHANG K L, et al. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption[J]. Journal of Materials Science, 2017, 52: 8258-8267.
doi: 10.1007/s10853-017-1041-6 |
[7] | WAN Y, JIAN X, LI C, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies[J]. Journal of Magnetism & Magnetic Materials, 2016, 399(1): 252-259. |
[8] |
CHEN C, XI J, YIN H, et al. Ultralight graphene micro-popcorns for multifunctional composite applications[J]. Carbon, 2018, 139: 545-555.
doi: 10.1016/j.carbon.2018.07.020 |
[9] |
YAN C, CAO J, LV H, et al. In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1-x-catalyzed growth to pursue superior microwave attenuation in X-band[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 309-316.
doi: 10.1039/C8QI01102H |
[10] |
TONG G, LIU F, WU W, et al. Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics[J]. Journal of Materials Chemistry A, 2014, 2(20): 7373-7382.
doi: 10.1039/c4ta00117f |
[11] |
NAZIR A, YU H, WANG L, et al. Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding[J]. Journal of Materials Science, 2018, 53: 8699-8719.
doi: 10.1007/s10853-018-2122-x |
[12] | LUO Chunjia, TANG Yusheng, JIAO Tian. High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28051-28061. |
[13] | YAN X, JI T, YE W. Surface modification of activated carbon fibers with Fe3O4 for enhancing their electromagnetic wave absorption property[J]. Journal of Nanomaterials, 2020(1): 1-14. |
[14] |
QIU J, QIU T. Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube-hollow carbon fiber composites[J]. Carbon, 2015, 81: 20-28.
doi: 10.1016/j.carbon.2014.09.011 |
[15] |
SHAO Y, LU W, CHEN H, et al. Flexible ultra-thin Fe3O4/MnO2 core-shell decorated CNT composite with enhanced electromagnetic wave absorption perfor-mance[J]. Composites Part B: Engineering, 2018, 144: 111-117.
doi: 10.1016/j.compositesb.2018.02.015 |
[16] | YAN L, HONG C, SUN B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6320-6331. |
[17] |
ZHOU Z P, LAI C L, ZHANG L F, et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties[J]. Polymer, 2009, 50 (13): 2999-3006.
doi: 10.1016/j.polymer.2009.04.058 |
[18] |
YCA B, QSA B, LEI S, et al. Effect of preparation conditions on structure and electromagnetic wave absorption properties of sandwich-like Fe3O4-rGO nanocomposites-science direct[J]. Journal of Magnetism and Magnetic Materials, 2020, 503: 166656.
doi: 10.1016/j.jmmm.2020.166656 |
[19] |
ZHANG X, ZHU W, ZHANG W, et al. Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7194-7202.
doi: 10.1007/s10854-018-8707-y |
[20] |
LO C K, XIAO D, CHOI M. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation[J]. Journal of Materials Chemistry, 2007, 17(23): 2418-2427.
doi: 10.1039/b617500g |
[21] |
HO C H, TSAI C P, CHUNG C C, et al. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles[J]. Chemistry of Materials, 2011, 23(7): 1753-1760.
doi: 10.1021/cm102758u |
[22] |
TURU Y, PETER H. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254: 2441-2449.
doi: 10.1016/j.apsusc.2007.09.063 |
[23] |
RITTER M, WEISS W. Fe3O4(III) surface structure determined by LEED crystallography[J]. Surface Science, 1999, 432(1/2): 81-94.
doi: 10.1016/S0039-6028(99)00518-X |
[24] |
XIANG J, LI J, ZHANG X, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A, 2014, 2(40): 16905-16914.
doi: 10.1039/C4TA03732D |
[25] | 叶伟, 孙雷, 余进, 等. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(1): 97-102. |
YE Wei, SUN Lei, YU Jin, et al. Preparation and microwave absorption property of flexible lightweight magnetic particles-carbon fiber composites[J]. Journal of Textile Research, 2019, 40 (1): 97-102. | |
[26] | HAN Z, LI D, WANG H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules[J]. Applied Physics Letters, 2009, 95(2): 1-3. |
[1] | 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73. |
[2] | 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193. |
[3] | 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102. |
[4] | 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171. |
[5] | 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27. |
[6] | 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35. |
[7] | 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20. |
[8] | 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89. |
[9] | 陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54. |
[10] | 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55. |
[11] | 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83. |
[12] | 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88. |
[13] | 魏发云, 杨帆, 王海楼, 于斌, 邹学书, 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60. |
[14] | 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75-83. |
[15] | 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82. |
|