纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 160-166.doi: 10.13475/j.fzxb.20210502307

• 机械与器材 • 上一篇    下一篇

基于感性意象的并条机造型设计

段金娟1(), 宣艾祺1, 袁博2, 李娜娜3   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.拉夫堡大学 航空与车辆工程学院, 莱斯特郡 LE11 3TU
    3.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2021-05-11 修回日期:2022-01-04 出版日期:2022-04-15 发布日期:2022-04-20
  • 作者简介:段金娟(1979—),女,副教授,硕士。主要研究方向为智能装备工业设计。E-mail: duanjinjuan@tiangong.edu.cn
  • 基金资助:
    天津市自然科学基金重点项目(18JCZDJC37000)

Drawing frame modeling design based on Kansei image

DUAN Jinjuan1(), XUAN Aiqi1, YUAN Bo2, LI Na'na3   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire LE11 3TU, UK
    3. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-05-11 Revised:2022-01-04 Published:2022-04-15 Online:2022-04-20

摘要:

为更准确地满足用户对纺织机械造型的感性需求,提升造型设计效率,基于感性工学和数量化理论I(QTI), 以并条机为例展开设计与实验研究。首先,筛选、确定并条机代表性样本和典型感性意象词对,通过实验获取用户感性评价数据;其次,基于QTI建立并条机感性意象与造型设计要素之间的关联模型,以“繁琐-简约”语义维度为例,求解模型得到造型设计推荐策略;最后,通过设计实践与用户评价,验证关联模型的准确性和可靠性。结果表明:基于感性工学和QTI的并条机关联模型具有较好的预测精度和可靠性,可为设计师提供较为准确、具体的设计策略推荐,提升设计效率,提高用户满意度。

关键词: 感性意象, 数量化理论I, 并条机, 纺织机械, 造型设计

Abstract:

Based on Kansei engineering and quantification theory I (QTI), the proposed paper took the drawing frame as an example to carry out design and experimental research in order to meet users' perceptual needs for textile machinery modeling and improve modeling design efficiency and optimize recommendation. Representative samples and Kansei antonym words of the drawing frame were selected and determined, and the users' Kansei evaluation data were obtained through experiments. Based on QTI, the mapping models between Kansei image of the drawing frame and the modeling design elements were established. Taking the "cumbersome-simplicity" semantic dimension as an example, modeling design recommendation strategies were obtained. Through design practice and user evaluation, the accuracy and reliability of the correlation model were verified. The results show that the drawing frame correlation model based on Kansei engineering and QTI has prediction accuracy and reliability, and it can provide designers with more accurate and specific design strategy recommendations, improve design efficiency and users' satisfaction.

Key words: Kansei image, quantification theory I, drawing frame, textile machinery, modeling design

中图分类号: 

  • TH122

图1

代表性并条机样本"

图2

并条机造型类目划分步骤"

图3

感性意象评价问卷"

表1

代表性样本的感性意象评价均值"

感性意
向词对
样本感性意象评价均值
1 2 3 22 23 24
突兀-协调 4.47 4.13 4.53 5.67 4.03 2.90
冰冷-亲和 3.63 3.57 3.53 5.03 2.80 2.70
流线-几何 5.03 5.27 4.87 4.50 4.97 4.30
轻巧-沉稳 5.43 3.53 4.90 4.77 4.53 3.60
保守-现代 3.97 4.77 4.10 4.80 3.30 3.77
灵动-机械 5.20 4.17 5.17 4.10 5.60 5.63
模块-整体 4.67 3.73 3.93 5.03 3.97 3.37
危险-安全 4.63 4.20 4.37 5.33 4.77 3.37
繁琐-简约 3.57 4.93 3.50 5.13 4.13 3.83
粗糙-精密 4.00 4.40 4.00 5.00 3.50 3.40

表2

造型特征类目划分及代表性样本的形态反应矩阵"

项目 类目 样本编码
1 2 3 22 23 24
车头前
盖(A)
近似梯形(A1) 0 0 0 0 0 0
斜面切角(A2) 0 1 1 0 0 0
弧面切角(A3) 1 0 0 1 0 0
弧面+斜切角(A4) 0 0 0 0 1 1
车头外侧
罩壳(B)
近似矩形(B1) 0 0 1 0 0 0
矩形切角(B2) 1 0 0 1 0 0
阶梯式(B3) 0 0 0 0 1 1
无罩壳(B4) 0 1 0 0 0 0
通风口
(C)
条形(C1) 1 0 1 0 0 0
方形阵列(C2) 0 0 0 0 1 0
双列条形(C3) 0 0 0 1 0 0
特殊造型(C4) 0 1 0 0 0 0
操作
面板(D)
单管支架式(D1) 0 0 1 0 1 1
嵌入式(D2) 1 1 0 1 0 0
脚踏(E) 盒式脚踏(E1) 0 1 0 1 0 0
层板式脚踏(E2) 1 0 1 0 1 1
下墙面造
型(F)
箱体(F1) 1 0 0 1 0 0
箱体+格栅(F2) 0 0 0 0 1 0
箱体半开放(F3) 0 1 1 0 0 1
管架开放式(F4) 0 0 0 0 0 0

表3

复相关系数和决定系数统计表"

序号 感性意象词对 复相关系数 决定系数
1 突兀-协调 0.797 0.635
2 冰冷-亲和 0.741 0.549
3 保守-现代 0.806 0.650
4 灵动-机械 0.850 0.722
5 模块-整体 0.846 0.716
6 危险-安全 0.831 0.691
7 繁琐-简约 0.977 0.954
8 粗糙-精密 0.781 0.609

表4

偏相关系数和标准系数统计表"

设计项目 偏相关系数 要素类目 标准系数
车头前盖(A) 0.877 近似梯形(A1) 0.370
斜面切角(A2) 0.554
弧面切角(A3) -0.694
弧面+斜切角(A4) -0.221
车头外侧罩壳(B) 0.959 近似矩形(B1) -1.253
矩形切角(B2) 0.028
阶梯式(B3) 1.155
无罩壳(B4) 0.158
通风口(C) 0.930 条形(C1) 0.352
方形阵列(C2) -1.077
双列条形(C3) 0.546
特殊造型(C4) -0.634
操作面板(D) 0.420 单管支架式(D1) 0.064
嵌入式(D2) -0.156
脚踏(E) 0.917 盒式脚踏(E1) 1.016
层板式脚踏(E2) -0.339
下墙面造型(F) 0.889 箱体(F1) 0.145
箱体+格栅(F2) 0.539
箱体半开放(F3) -0.243
管架开放式(F4) 0.127
复相关系数R 0.966
决定系数R2 0.934
常数项 4.232

图4

并条机方案评价样本"

表5

用户感性意象评价"

评价样本编号 方案1 方案2 样本6 样本13 样本16
评价均值 4.93 4.00 3.20 4.87 4.20
[1] 李西兴, 郭顺生, 杜百岗. 纺织机械制造企业数字化智能化制造与管理平台设计与实现[J]. 计算机集成制造系统, 2016, 22(3):672-685.
LI Xixing, GUO Shunsheng, DU Baigang. Design and implementation of digital & intelligent management platform for textile machinery manufacturing enterprise[J]. Computer Integrated Manufacturing Systems, 2016, 22(3):672-685.
[2] JIAO Y, QU Q X. A proposal for kansei knowledge extraction method based on natural language processing technology and online product reviews[J]. Computers in Industry, 2019, 108:1-11.
doi: 10.1016/j.compind.2019.02.011
[3] GUO F, QU Q X, NAGAMACHI M, et al. A proposal of the event-related potential method to effectively identify kansei words for assessing product design features in kansei engineering research[J]. International Journal of Industrial Ergonomics, 2020, 76:102940.
doi: 10.1016/j.ergon.2020.102940
[4] SELF J A. Communication through design sketches: implications for stakeholder interpretation during concept design[J]. Design Studies, 2019, 63:1-36.
doi: 10.1016/j.destud.2019.02.003
[5] 万露, 林丽, 曹翀, 等. 感性叙事为导向的文创产品概念设计方法[J]. 包装工程, 2020, 41(10):157-162.
WAN Lu, LIN Li, CAO Chong, et al. Kansei narrative oriented conceptual design method for cultural and creative products[J]. Packaging Engineering, 2020, 41(10):157-162.
[6] LI X, SU J N, ZHANG Z P, et al. Product innovation concept generation based on deep learning and kansei engineering[J]. Journal of Engineering Design, 2021, 32(10): 559-589.
doi: 10.1080/09544828.2021.1928023
[7] LO C H. Building a relationship between elements of product form features and vocabulary assessment models[J]. Eurasia Journal of Mathematics, Science & Technology Education, 2016, 12(5): 1399-1423.
[8] 段金娟, 侯子轩, 石保存. 基于层次分析法的纺织机械造型设计研究[J]. 包装工程, 2021, 42(12):98-104.
DUAN Jinjuan, HOU Zixuan, SHI Baocun. Textile machinery modeling design based on analytic hierarchy process[J]. Packaging Engineering, 2021, 42(12):98-104.
[9] NAGAMACHI M. Kansei engineering: a new ergonomic consumer-oriented technology for product develop-ment[J]. International Journal of Industrial Ergonomics, 1995, 15(1):3-11.
doi: 10.1016/0169-8141(94)00052-5
[10] 苏建宁, 李鹤歧, 李奋强. 产品设计中的感性意象定位研究[J]. 兰州理工大学学报, 2004(2):40-43.
SU Jianning, LI Heqi, LI Fenqiang. Investigation of kansei image direction for product design[J]. Journal of Lanzhou University of Technology, 2004(2):40-43.
[11] NAGAMACHI M. Kansei engineering as a powerful consumer-oriented technology for product develop-ment[J]. Applied Ergonomics, 2002, 33(3):289-294.
doi: 10.1016/S0003-6870(02)00019-4
[12] 甘美辰, 李敏. 女装搭配推荐系统的设计与实现[J]. 纺织学报, 2020, 41(10):122-131.
GAN Meichen, LI Min. Design and realization of a collocation recommendation system for women's clothing[J]. Journal of Textile Research, 2020, 41(10):122-131.
[13] HAYASHI C. On the quantification of qualitative data from the mathematic statistical point of view[J]. Annals of the Institute of Statistical Mathematics, 1950, 2(1):35-47.
doi: 10.1007/BF02919500
[14] 苏建宁, 李鹤歧. 应用数量化一类理论的感性意象与造型设计要素关系的研究[J]. 兰州理工大学学报, 2005(2):36-39.
SU Jianning, LI Heqi. The relationship between perceptual image and modeling design elements based on quantitative theory[J]. Journal of Lanzhou University of Technology, 2005(2):36-39.
[15] NAGAMACHI M. Kansei/affective engineering[M]. Abingdon: CRC Press, 2011:113-115.
[16] 姚子颖, 王思萍. 基于感性意象的投影仪造型设计[J]. 东华大学学报(自然科学版), 2013, 39(4):529-534.
YAO Ziying, WANG Siping. Projector form design based on perceptual image[J]. Journal of Donghua Univer-sity(Natural Science), 2013, 39(4):529-534.
[17] OSGOOD C E. Exploration in semantic space: a personal diary[J]. Journal of Social Issues, 1971, 27: 5-64.
doi: 10.1111/j.1540-4560.1971.tb00678.x
[18] 段金娟, 王可心, 孟琦, 等. 基于可拓语义分析的注塑机造型设计研究[J]. 包装工程, 2021, 42(22):115-122,156.
DUAN Jinjuan, WANG Kexin, MENG Qi, et al. Research on modeling design of injection molding machines based on extension semantic analysis[J]. Packaging Engineering, 2021, 42(22): 115-122,156.
[19] 李倩文, 王建萍, 杨雅岚, 等. 基于意象尺度的男西装造型风格认知评价[J]. 纺织学报, 2021, 42(4):149-154.
LI Qianwen, WANG Jianping, YANG Yalan, et al. Cognitive evaluation of men's suit style based on image scales[J]. Journal of Textile Research, 2021, 42(4):149-154.
[20] 刘建国, 周涛, 郭强, 等. 个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学, 2009, 6(3):1-10.
LIU Jianguo, ZHOU Tao, GUO Qiang, et al. Overview of the evaluated a algorithms for the personal recommendation systems[J]. Complex Systems and Complexity Science, 2009, 6(3):1-10.
[1] 刘泽旭, 胥光申, 盛晓超, 代欣怡. 洛伦兹力磁悬浮织针驱动器设计与仿真[J]. 纺织学报, 2021, 42(11): 159-165.
[2] 李倩文, 王建萍, 杨雅岚, 张冰洁, 李知霖. 基于数量化理论I的男西装款式要素感性评价[J]. 纺织学报, 2021, 42(05): 155-161.
[3] 郑畑子, 王建萍. 服装印花图案设计的感性研究[J]. 纺织学报, 2020, 41(08): 101-107.
[4] 刘佟. 基于人体曲面变化的服装几何空间设计[J]. 纺织学报, 2019, 40(11): 155-160.
[5] 王青 王贯超. FA322B并条机牵伸机构主牵伸区部分参数的优化设计[J]. 纺织学报, 2017, 38(08): 139-143.
[6] 高志娟 郁崇文. 并条机后区牵伸倍数的模拟设计[J]. 纺织学报, 2017, 38(04): 39-45.
[7] 邱海飞. 3D打印技术在织机打纬−开口机构中的应用[J]. 纺织学报, 2017, 38(01): 140-146.
[8] 宋栓军. 并条机牵伸罗拉同步性检测方法[J]. 纺织学报, 2016, 37(09): 123-128.
[9] 周小溪 梁惠娥. 基于感性意象的服装面料设计效果评价[J]. 纺织学报, 2015, 36(04): 60-64.
[10] 姜磊. 卷染机自动控制系统的改造设计[J]. 纺织学报, 2015, 36(03): 121-127.
[11] 周小溪 梁惠娥. 服装面料感性意象的评价与分析[J]. 纺织学报, 2015, 36(03): 99-104.
[12] 赵孟超, 许旭兵. 不对称悬垂褶服装的造型特征及设计方法[J]. 纺织学报, 2012, 33(7): 104-108.
[13] 李仁旺;饶楚楚. 面向按订单研制的分类成本模型的研究与应用[J]. 纺织学报, 2011, 32(4): 133-137.
[14] 英迪;汪军;田承泰. 牵伸力与并条条子质量的关系[J]. 纺织学报, 2010, 31(3): 111-115.
[15] 李宏亮;周武能;王新厚;. 并条机自调匀整双开环控制系统[J]. 纺织学报, 2010, 31(2): 106-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!