纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 55-61.doi: 10.13475/j.fzxb.20210504907

• 纺织工程 • 上一篇    下一篇

仿生鸟羽结构针织面料开发与性能评价

王建萍1,2,3,4, 苗明珠1,2, 沈德垚1,2, 姚晓凤1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
    4.同济大学 上海国际设计创新研究院, 上海 200092
  • 收稿日期:2021-05-19 修回日期:2022-01-16 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 姚晓凤
  • 作者简介:王建萍(1962—),女,教授,博士。主要研究方向为服装先进制造技术。
  • 基金资助:
    中央高校基本科研业务费专项基金项目(2232022G-08);上海市浦江人才计划资助项目(2020PJC001);国家重点研发计划“科技冬奥”重点专项(2019YFF0302100);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Development and performance evaluation of knitted fabric with bionic bird feather structure

WANG Jianping1,2,3,4, MIAO Mingzhu1,2, SHEN Deyao1,2, YAO Xiaofeng1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
    4. Shanghai Institute of International Design & Innovation, Tongji University, Shanghai 200092, China
  • Received:2021-05-19 Revised:2022-01-16 Published:2022-04-15 Online:2022-04-20
  • Contact: YAO Xiaofeng

摘要:

为缩短国内滑雪服研发技术与国外品牌的差距,探讨仿生鸟羽结构对针织织物热湿性能的影响,以便更好地提升国内滑雪保暖裤的穿着舒适性。首先,通过融合仿生学和提花设计手法改变织针成圈方式,根据羽毛微观结构特征开发了8种不同组织结构的仿生针织运动面料;然后,在热阻、保温率、透湿率、透气率和经纬向芯吸高度等单一指标对比的基础上,建立灰色近优矩阵进一步综合评估面料热湿性能优劣;最后,基于男性下肢局部出汗、热分布特征提出各面料组织的应用建议。结果表明:凹槽Ⅰ类、仿羽片面料吸湿透湿性好,仿羽小枝、仿羽枝、凹槽Ⅱ类面料保暖性优异,空泡状Ⅰ类和空泡状Ⅱ类面料透气性突出。

关键词: 结构仿生, 鸟羽结构, 针织面料开发, 灰色近优法, 织物热湿性能, 滑雪服

Abstract:

In order to improve the wear comfort of domestic ski warm pants and shorten the gap between domestic ski wear research and development technology and foreign brands, the effect of bionic bird feather structure on the thermal and wet properties of knitted fabrics was investigated. Eight types of bionic knitted fabrics with different structures were developed according to the microstructure characteristics of feathers by combining bionics and jacquard design techniques. Based on the comparison of thermal resistance, heat preservation rate, moisture permeability, air permeability and warp and weft core suction height, the gray near-optimal matrix was established to further evaluate the thermal and wet properties of the fabrics. The application suggestions of each fabric were put forward based on the thermal and wet map of male lower extremities. The results show that groove-like type Ⅰ, bionic feather sheet fabrics have good water absorption, and bionic feather twig, bionic pinnule, and groove-like type Ⅱ fabrics have excellent warmth retention. The air permeability of hollow bubble-like type Ⅰ and type Ⅱ fabrics is outstanding.

Key words: bionic structure, bird feather structure, knitted fabric development, gray near-optimal method, fabric thermal and wet property, ski wear

中图分类号: 

  • TS941.19

图1

羽毛微观结构照片"

图2

仿生鸟羽结构面料编织工艺图"

图3

仿生鸟羽结构面料"

表1

面料规格和结构参数"

试样名称 面密度/
(g·m-2)
厚度/
mm
密度/(线圈数·(5 cm)-1)
横向 纵向
1#仿羽轴 477 1.91 98 100
2#仿羽片 297 0.97 99 118
3#凹槽Ⅰ类 390 1.84 92 108
4#凹槽Ⅱ类 485 2.20 96 86
5#仿羽枝 461 1.93 99 112
6#仿羽小枝 532 2.51 95 145
7#空泡状Ⅰ类 431 2.39 86 150
8#空泡状Ⅱ类 486 2.42 95 165

表2

面料性能测试结果"

试样名称 热阻/(m2·K·W-1) 保温率/% 透气率/(mm·s-1) 透湿率/
(g·m-2·(24 h)-1)
芯吸高度/cm
纵向 横向
1#仿羽轴 54.85 50.29 129.983 637.1 3.75 6.75
2#仿羽片 38.39 41.46 88.224 701.6 6.05 6.75
3#凹槽Ⅰ类 52.96 49.42 90.352 639.7 6.91 8.25
4#凹槽Ⅱ类 65.28 54.63 111.937 626.3 4.71 6.25
5#仿羽枝 65.36 54.66 128.644 647.8 4.44 6.58
6#仿羽小枝 78.92 58.28 131.873 646.9 6.36 5.90
7#空泡状Ⅰ类 58.73 52.00 151.199 686.4 5.73 6.20
8#空泡状Ⅱ类 62.29 53.47 144.231 680.0 5.32 6.40

图4

款式结构分区 注:为A区;为B区;为C区。"

图5

裤装编织工艺图"

[1] 张冰洁, 王莉, 傅维杰, 等. 滑雪内衣差异化需求多维度分析[J]. 纺织学报, 2021, 42(8):161-166.
ZHANG Bingjie, WANG Li, FU Weijie, et al. Multi-dimensional analysis of the differentiated needs of ski underwear[J]. Journal of Textile Research, 2021, 42 (8): 161-166.
doi: 10.1177/004051757204200306
[2] 刘璟, 王永进. 单板滑雪服穿着评价与需求的调查研究[J]. 北京服装学院学报(自然科学版), 2018, 38(1): 42-49.
LIU Jing, WANG Yongjin. Research on the evaluation and requirements of snowboard jacktets[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2018, 38(1): 42-49.
[3] 王莉, 张冰洁, 王建萍, 等. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(5):66-72.
WANG Li, ZHANG Bingjie, WANG Jianping, et al. Development and performance evaluation of winter knitted sports fabric based on bionics[J]. Journal of Textile Research, 2021, 42 (5): 66-72.
[4] 丛洪莲, 张永超, 张爱军, 等. 纬编均匀提花针织物仿真结构模型的建立[J]. 纺织学报, 2016, 37(8): 143-148.
CONG Honglian, ZHANG Yongchao, ZHANG Aijun, et al. Simulation structure model of weft knitted flat jacquard fabrics[J]. Journal of Textile Research, 2016, 37(8): 143-148.
[5] GURERA Dev, BHUSHAN Bharat. Movement of air bubbles under various liquids using bioinspired conical surfaces[J]. Journal of Colloid and Interface Science, 2021, 582: 41-50.
doi: 10.1016/j.jcis.2020.08.031
[6] ZHANG Liwen, LIU Guang, CHEN Huawei, et al. Bioinspired unidirectional liquid transport micro-nano structures: a review[J]. Journal of Bionic Engineering, 2021, 18(1): 1-29.
doi: 10.1007/s42235-021-0009-z
[7] 张旭靖, 王立川, 陈雁. 针织内衣织物接触冷暖感的形成机制与影响因素[J]. 纺织学报, 2017, 38(1): 57-60.
ZHANG Xujing, WANG Lichuan, CHEN Yan. Formation mechanism and influence factors of warm-cool feeling of knitted underwear fabrics[J]. Journal of Textile Research, 2017, 38(1): 57-60.
[8] ALESSANDRO Valenza, ANTONINO Bianco, DAVIDE Filingeri. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running[J]. The Journal of Physiology, 2019, 597(13): 3315-3332.
doi: 10.1113/JP277928
[9] 孙岑文捷, 倪军, 张昭华, 等. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
SUN Cenwenjie, NI Jun, ZHANG Zhaohua, et al. Ventilation design and thermal-wet comfort evaluation of knitted sportswear[J]. Journal of Textile Research, 2020, 41(11): 122-127.
[10] ZHANG Chengchun, ZHENG Yihua, WU Zhengyang, et al. Non-wet kingfisher flying in the rain: the water-repellent mechanism of elastic feathers[J]. Journal of Colloid and Interface Science, 2019, 541: 56-64.
doi: S0021-9797(19)30077-3 pmid: 30682593
[11] JOÃO Bessa, JEFFERSON Souza, LOPES J B, et al. Characterization of thermal and acoustic insulation of chicken feather reinforced composites[J]. Procedia Engineering, 2017, 200: 472-479.
doi: 10.1016/j.proeng.2017.07.066
[12] TAMRAT Tesfaye, BRUCE Sithole, DERESH Ramjugernath, et al. Valorisation of chicken feathers: characterisation of physical properties and morphological structure[J]. Journal of Cleaner Production, 2017, 149: 349-365.
doi: 10.1016/j.jclepro.2017.02.112
[13] DAMIEN Fournet, LINDSEY Ross, THOMAS Voelcker, et al. Body mapping of thermoregulatory and perceptual responses of males and females running in the cold[J]. Journal of Thermal Biology, 2013, 38(6): 339-344.
doi: 10.1016/j.jtherbio.2013.04.005
[14] SMITH C J, HAVENITH G. Body mapping of sweating patterns in athletes: a sex comparison[J]. Medicine and Science in Sports and Exercise, 2012, 44(12): 2350-2361.
doi: 10.1249/MSS.0b013e318267b0c4
[1] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[2] 娄少红. 双圆弧的图解及其在衣缝轮廓线设计中的应用[J]. 纺织学报, 2019, 40(09): 150-158.
[3] 刘焘 邹奉元. 涂碳纤维导电针织物的结构设计及其传感性能[J]. 纺织学报, 2014, 35(9): 31-0.
[4] 戴璐. 细节设计在服装造型中的应用[J]. 纺织学报, 2012, 33(7): 118-122.
[5] 刘红;张明;陈东生;魏取福;王建刚;赵莉;涂红燕. 标准女体胸围曲线研究[J]. 纺织学报, 2011, 32(2): 117-120.
[6] 刘红;陈东生;魏取福. 服装压力对人体生理的影响及其客观测试[J]. 纺织学报, 2010, 31(3): 138-142.
[7] 金子敏;于施佳;阎玉秀. 青年女上体无缝内衣的压力舒适性[J]. 纺织学报, 2010, 31(2): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!