纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 136-142.doi: 10.13475/j.fzxb.20210204807
王艳萍1, 陈晓倩2, 夏伟2, 傅佳佳1(), 高卫东1, 王鸿博1, ARTUR Cavaco-Paulo3
WANG Yanping1, CHEN Xiaoqian2, XIA Wei2, FU Jiajia1(), GAO Weidong1, WANG Hongbo1, ARTUR Cavaco-Paulo3
摘要:
针对涤纶织物亲水性较差的问题,采用特异腐质霉(H.insolens)来源的角质酶对其表面进行改性。通过单因素变量试验对反应残液进行紫外光吸光度测试,确定角质酶处理涤纶织物的优化工艺条件:角质酶用量为100 U/mL,时间为72 h,pH值为8.5,温度为60 ℃。在此条件下,加入表面活性剂Trition X-100(为0.1%)能显著提高角质酶催化水解涤纶织物的产物释放量。测定了反应残液中产物的种类、处理前后织物的亲水性和染色性能,并对涤纶织物表面形貌以及表面化学成分进行表征,分析涤纶的酶法改性机制。结果表明:角质酶水解涤纶产物主要是单(对苯二甲酸-2-羟基乙酯)(MHET)和对苯二甲酸(TPA);角质酶处理后涤纶织物的接触角由93.4°降至83.1°;处理后织物的亚甲基蓝染色深度值显著增加。
中图分类号:
[1] | 王小花, 洪枫, 陆大年, 等. 脂肪酶在纺织工业中的应用[J]. 毛纺科技, 2005, 33(6): 22-24. |
WANG Xiaohua, HONG Feng, LU Danian, et al. Application of lipase in textile industry[J]. Wool Textile Journal, 2005, 33(6): 22-24. | |
[2] | 李旭明, 师利芬, 钱志华, 等. 脂肪酶处理对涤纶织物亲水性能的改善[J]. 纺织学报, 2012, 33(4):91-94. |
LI Xuming, SHI Lifen, QIAN Zhihua, et al. Improvement of wettability of PET fabrics treated bylipase[J]. Journal of Textile Research, 2012, 33(4):91-94. | |
[3] | REHMAN A, RAZA Z A, MASOOD R. Optimization of lipase activity under various chemo-physical conditions for hydrolysis of polyester fabric using multiple statistical approaches[J]. Journal of The Textile Institute, 2019(6): 826-834. |
[4] | 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015, 36(8): 156-164. |
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of hydrophilic modification of polyester surface[J]. Journal of Textile Research, 2015, 36(8): 156-164. | |
[5] | 冯冠晨, 胡柳. 脂肪酶的催化性能及其在涤纶改性中的应用[J]. 染整技术, 2017, 39(4): 37-43. |
FENG Guanchen, HU Liu. The catalytic performance of lipase and its application in polyester modification[J]. Textile Dyeing and Finishing Journal, 2017, 39(4): 37-43. | |
[6] | 王新, 王进美, 周娅楠. 涤纶表面亲水改性研究进展[J]. 合成纤维, 2021, 50(7): 27-30. |
WANG Xin, WANG Jinmei, ZHOU Ya'nan. Research progress on hydrophilic modification of polyester surface[J]. Synthetic Fiber in China, 2021, 50(7): 27-30. | |
[7] | HARSHITA C. Environment friendly technologies of biochemical and physical hydrolysis for polyester modification: a comparative study[J]. Man-made Textiles in India, 2018, 46(1):10-18. |
[8] |
WU J, CAI G, LIU J, et al. Eco-friendly surface modification on polyester fabrics by esterase treatment[J]. Applied Surface Science, 2014, 295: 150-157.
doi: 10.1016/j.apsusc.2014.01.019 |
[9] | 张欢, 闫俊, 王晓武, 等. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019, 40(7):103-107. |
ZHANG Huan, YAN Jun, WANG Xiaowu, et al. Application of low temperature plasma in surface modification of polyester[J]. Journal of Textile Research, 2019, 40(7):103-107. | |
[10] | GAO A. Hydrophilic modification of polyester fabric by synergetic effect of biological enzymolysis and non-ionic surfactant, and applications in cleaner production[J]. Journal of Cleaner Production, 2017(164): 277-287. |
[11] |
DONELLI I, FREDDI G, NIERSTRASZ V A, et al. Surface structure and properties of poly(ethylenetereph-thalate)hydrolyzed by alkali and cutinase[J]. Polymer Degradation and Stability, 2010, 95(9):1542-1550.
doi: 10.1016/j.polymdegradstab.2010.06.011 |
[12] | MARIA K, SOZON V. Surface modification of poly(ethylene terephthalate) (PET) fibers by acutinase from Fusariumoxysporum[J]. Process Biochemistry, 2015:1359-5113. |
[13] |
CARNIEL A, JOSE Nicomedes Junior. Lipase from Candida antarctica (CALB) and cutinase from Humicolainsolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59:84-90.
doi: 10.1016/j.procbio.2016.07.023 |
[14] | KARACA B, DEMIR A, ÖZDOAĞAN E, et al. Environmentally benign alternatives: plasma and enzymes to improve moisture management properties of knitted PET fabrics[J]. Fibers & Polymers, 2010, 11(7):1003-1009. |
[15] | 张瑶, 陈晟, 吴丹, 等. 重组角质酶的发酵制备及其对涤纶纤维的表面改性[J]. 生物工程学报, 2011, 27(7):1057-1064. |
ZHANG Yao, CHEN Sheng, WU Dan, et al. Fermentation preparation of recombinant cutinase and its surface modification on polyester fiber[J]. Journal of Bioengineering, 2011, 27(7):1057-1064. | |
[16] | 杨正富. 精对苯二甲酸排放污水中对苯二甲酸的测定[J]. 工业水处理, 2002, 22(2):38-39. |
YANG Zhengfu. Determination of terephthalic acid in wastewater discharged by refined terephthalic acid[J]. Industrial Water Treatment, 2002, 22(2):38-39. |
[1] | 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135. |
[2] | 雷彩虹, 俞林双, 朱海霖, 郑涛, 陈建勇. 不同水解方式下蚕丝丝素蛋白材料的止血性能[J]. 纺织学报, 2022, 43(04): 15-19. |
[3] | 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109. |
[4] | 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115. |
[5] | 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49. |
[6] | 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18. |
[7] | 史晟, 王彦, 李飞, 唐建东, 高翔宇, 侯文生, 郭红, 王淑花, 姬佳奇. 草酸稀溶液高效分离废旧聚酯/棉混纺织物[J]. 纺织学报, 2022, 43(02): 140-148. |
[8] | 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43. |
[9] | 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170. |
[10] | 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195. |
[11] | 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128. |
[12] | 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83. |
[13] | 陈香香, 吴婷, 周伟涛, 孙洋洋, 杜姗, 张晓莉. 双氧水/抗坏血酸引发甲基丙烯酸甲酯接枝改性锦纶6织物及其性能[J]. 纺织学报, 2021, 42(09): 131-136. |
[14] | 于金超, 姬洪, 陈康, 甘宇. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(04): 42-47. |
[15] | 王少博, 肖阳, 黄鑫, 李增贝. 生物基聚对苯二甲酸丙二醇酯纤维制备技术的研究进展[J]. 纺织学报, 2021, 42(04): 16-25. |
|