纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 49-56.doi: 10.13475/j.fzxb.20220103408
• 特约专栏:第十一届中国纺织学术年会专家观点 • 上一篇 下一篇
樊威1,2(), 刘红霞1,2, 陆琳琳1,2, 窦皓1,2, 孙艳丽1,2
FAN Wei1,2(), LIU Hongxia1,2, LU Linlin1,2, DOU Hao1,2, SUN Yanli1,2
摘要:
为了提高天然纤维废旧纺织品的回收利用率,减少环境污染和资源浪费;综述了天然纤维废旧纺织品的物理法、化学法、生物法和能量法等4种回收利用方法,阐述了各种方法的研究现状,并分析了其适合回收的纺织品类型和等级。研究认为:废旧纺织品材料组分复杂,再生产品结构与性能之间关系不明确、回收成本高、附加值低、接受程度差;指出未来应从废旧纺织品分拣识别技术、再生产品的构效关系、低成本回收技术、高值化策略和推广使用政策法规方面进行重点突破,以期推动天然纤维废旧纺织品的产业化步伐。
中图分类号:
[1] |
YOUSEF S, TATARIANTS M, TICHONOVAS M, et al. A new strategy for using textile waste as a sustainable source of recovered cotton[J]. Resources Conservation and Recycling, 2019, 145: 359-369.
doi: 10.1016/j.resconrec.2019.02.031 |
[2] | TELLI A, BABAARSLAN O. Usage of recycled cotton and polyester fibers for sustainable staple yarn technology[J]. Tekstil Ve Konfeksiyon, 2017, 27(3): 224-233. |
[3] |
HU Y Z, DU C Y, LEU S Y, et al. Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery[J]. Resources Conservation and Recycling, 2018, 129: 27-35.
doi: 10.1016/j.resconrec.2017.09.024 |
[4] |
SANDIN G, PETERS G M. Environmental impact of textile reuse and recycling: a review[J]. Journal of Cleaner Production, 2018, 184: 353-365.
doi: 10.1016/j.jclepro.2018.02.266 |
[5] | 杜欢政, 陆莎, 孙荐, 等. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(6): 1-7. |
DU Huanzheng, LU Sha, SUN Jian, et al. Research on constructing high-value recycling systems for municipal textile wastes[J]. Journal of Textile Research, 2021, 42(6): 1-7.
doi: 10.1177/004051757204200101 |
|
[6] |
SILVA T L, CAZETTA A L, SOUZA P S C, et al. Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions[J]. Journal of Cleaner Production, 2018, 171: 482-490.
doi: 10.1016/j.jclepro.2017.10.034 |
[7] | 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(8): 34-40. |
WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles[J]. Journal of Textile Research, 2021, 42(8): 34-40. | |
[8] | 史晟, 戴晋明, 牛梅, 等. 废旧纺织品的再利用[J]. 纺织学报, 2011, 32(11): 147-152. |
SHI Sheng, DAI Jinming, NIU Mei, et al. Renewability of waste textile[J]. Journal of Textile Research, 2011, 32(11): 147-152. | |
[9] |
WANASSI B, AZZOUZ B, BEN H M. Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers[J]. Industrial Crops and Products, 2016, 87: 27-32.
doi: 10.1016/j.indcrop.2016.04.020 |
[10] |
GRGAC S F, TARBUK A, DEKANIC T, et al. The chitosan implementation into cotton and polyester/cotton blend fabrics[J]. Materials, 2020, 13(7): 1616.
doi: 10.3390/ma13071616 |
[11] |
ESTEVE-TURRILLAS F A, DE L G M. Environmental impact of recover cotton in textile industry[J]. Resources, Conservation and Recycling, 2017, 116: 107-115.
doi: 10.1016/j.resconrec.2016.09.034 |
[12] |
PATNAIK A, MVUBU M, MUNIYASAMY S, et al. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies[J]. Energy and Buildings, 2015, 92: 161-169.
doi: 10.1016/j.enbuild.2015.01.056 |
[13] |
ALI A, SHAKER K, NAWAB Y, et al. Hydrophobic treatment of natural fibers and their composites: a review[J]. Journal of Industrial Textiles, 2018, 47(8): 2153-2183.
doi: 10.1177/1528083716654468 |
[14] |
HAULE L V, CARR C M, RIGOUT M. Preparation and physical properties of regenerated cellulose fibres from cotton waste garments[J]. Journal of Cleaner Production, 2016, 112: 4445-4451.
doi: 10.1016/j.jclepro.2015.08.086 |
[15] |
MISHRA R, BEHERA B, MILITKY J. Recycling of textile waste into green composites: performance characterization[J]. Polymer Composites, 2014, 35(10): 1960-1967.
doi: 10.1002/pc.22855 |
[16] |
GOVINDARAJU R, JAGANNATHAN S. Optimization of mechanical properties of silk fiber-reinforced polypropylene composite using box-behnken experimental design[J]. Journal of Industrial Textiles, 2016, 47(5): 602-621.
doi: 10.1177/1528083716667257 |
[17] |
RANAKOTI L, RAKESH P K. Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite[J]. Composites Communications, 2020, 22: 100526.
doi: 10.1016/j.coco.2020.100526 |
[18] |
WEI B, XU F, AZHAR S W, et al. Fabrication and property of discarded denim fabric/polypropylene composites[J]. Journal of Industrial Textiles, 2014, 44(5), 798-812.
doi: 10.1177/1528083714550055 |
[19] |
FAN W, YUAN L J, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79.
doi: 10.1016/j.polymertesting.2018.05.007 |
[20] |
MENG X, FAN W, MAHARI W A W, et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials[J]. Journal of Cleaner Production, 2021, 281: 125321.
doi: 10.1016/j.jclepro.2020.125321 |
[21] |
LU L L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal, 2020, 91(3/4): 358-372.
doi: 10.1177/0040517520944477 |
[22] |
LEE C K, CHO M S, KIM I H, et al. Preparation and physical properties of the biocomposite, cellulose diacetate/kenaf fiber sized with poly(vinyl alcohol)[J]. Macromolecular Research, 2010, 18(6): 566-570.
doi: 10.1007/s13233-010-0611-0 |
[23] |
XIONG R, ZHNG X X, TIAN D, et al. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics[J]. Cellulose, 2012, 19(4): 1189-1198.
doi: 10.1007/s10570-012-9730-4 |
[24] |
KENNED J J, SANKARANARAYANASAMY K, KUMAR C S. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review[J]. Polymers and Polymer Composites, 2020, 29 (7): 1011-1038.
doi: 10.1177/0967391120942419 |
[25] |
OZTURK B, PARKINSON C, GONZALEZ-MIQUEL M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents[J]. Separation and Purification Technology, 2018, 206: 1-13.
doi: 10.1016/j.seppur.2018.05.052 |
[26] | 谢妍妍, 柴云, 张普玉. 离子液体溶解纤维素的研究[J]. 化学通报, 2020, 9: 1104-1112. |
XIE Yanyan, CHAI Yun, ZHANG Puyu. Study on dissolving cellulose by ionic liquids[J]. Chemistry, 2020, 9: 1104-1112. | |
[27] |
WILKES J S. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80.
doi: 10.1039/b110838g |
[28] |
CAI J, ZHANG L N, ZHOU J P, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties[J]. Advanced Materials, 2007, 19(6): 821-825.
doi: 10.1002/adma.200601521 |
[29] | AGATE S, TYAGI P, NAITHANI V, et al. Innovating generation of nanocellulose from industrial hemp by dual asymmetric centrifugation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1850-1858. |
[30] |
AHUJA D, KAUSHIK A, SINGH M. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment[J]. International Journal of Biological Macromolecules, 2018, 107: 1294-1301.
doi: 10.1016/j.ijbiomac.2017.09.107 |
[31] |
PACAPHOL K, AHT-ONG D. Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water[J]. Journal of Cleaner Production, 2017, 142: 1283-1295.
doi: 10.1016/j.jclepro.2016.09.008 |
[32] |
TUERXUN D, PULINGAM T, NORDIN N I, et al. Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber-wood and kenaf-bast fibers[J]. European Polymer Journal, 2019, 116: 352-360.
doi: 10.1016/j.eurpolymj.2019.04.021 |
[33] |
ABRAHAM R E, WONG C S, PURI M. Enrichment of cellulosic waste hemp (cannabis sativa) hurd into non-toxic microfibres[J]. Materials, 2016, 9(7): 562.
doi: 10.3390/ma9070562 |
[34] | 张勇, 鄢勇气. 苎麻化学成分的药用价值及其提取方法[J]. 化学研究, 2021, 5: 536-540. |
ZHANG Yong, YAN Yongqi. Medicinal value and extraction methods of chemical constituents from ramie[J]. Chemical Research, 2021, 5: 536-540. | |
[35] | HALIS E U, HICRAN D, FIGEN S. Recycling of cellulose from vegetable fiber waste for sustainable industrial applications[J]. Journal of Industrial Textiles, 2019, 70(1), 37-41. |
[36] |
BAHETI V, MISHRA R, MILITKY J, et al. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films[J]. Fibers and Polymers, 2014, 15(7): 1500-1506.
doi: 10.1007/s12221-014-1500-5 |
[37] |
SPARKES J, HOLLAND C. The rheological properties of native sericin[J]. Acta Biomaterialia, 2018, 69: 234-242.
doi: 10.1016/j.actbio.2018.01.021 |
[38] | CHEN S Y, LIU M Y, HUANG H M, et al. Mechanical properties of bombyx mori silkworm silk fibre and its corresponding silk fibroin filament: a comparative study[J]. Materials & Design, 2019, 181: 108077. |
[39] | 张昕, 潘志娟. 废旧蚕丝的回收利用现状分析[J]. 丝绸, 2019(6): 25-30. |
ZHANG Xin, PAN Zhijuan. Analysis on recycling situation of waste silk[J]. Journal of Silk, 2019(6): 25-30. | |
[40] |
ZOU S, WANG X, FAN S, et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors[J]. Journal of Materials Chemistry B, 2021, 9 (27): 5514-5527.
doi: 10.1039/D1TB00944C |
[41] | 陈小菊, 沈嘉丽, 张佩华. 疝修补片用再生丝素蛋白纳米纤维膜的制备与性能探讨[J]. 国际纺织导报, 2021, 49(11):12-15. |
CHEN Xiaoju, SHEN Jiali, ZHANG Peihua. Preparation and properties of regenerated silk fibroin nanofiber membrane for hernia patch[J]. Melliand China, 2021, 49(11):12-15. | |
[42] |
QIANG M A, BO Y B, HHL A, et al. Preparation and properties of photochromic regenerated silk fibroin/Tungsten trioxide nanoparticles hybrid fibers[J]. Composites Communications, 2021, 27: 100848.
doi: 10.1016/j.coco.2021.100848 |
[43] | YAMAUCHI K, KHODA A. Novel proteinous microcapsules from wool keratins[J]. Colloids and Surfaces B: Biointerface, 1997, 9: 117-119. |
[44] |
FEROZ S, MUHAMMAD N, RATNAYAKE J, et al. Keratin-based materials for biomedical applications[J]. Bioactive Materials, 2020, 5(3): 496-509.
doi: 10.1016/j.bioactmat.2020.04.007 |
[45] |
WANG B, YANG W, MCKITTRICK J, et al. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76: 229-318.
doi: 10.1016/j.pmatsci.2015.06.001 |
[46] |
HOLKAR C R, JAIN S S, JADHAV A J, et al. Valorization of keratin based waste[J]. Process Safety and Environmental Protection, 2018, 115: 85-98.
doi: 10.1016/j.psep.2017.08.045 |
[47] |
SHAVANDI A, SILVAIL T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomaterials Science, 2017, 5( 9): 1699-1735.
doi: 10.1039/C7BM00411G |
[48] | 胡杰, 宋玉奎, 柴玉叶, 等. 水性聚氨酯丙烯酸酯接枝角蛋白水凝胶的合成及性能[J]. 皮革科学与工程, 2015, 25(3):5. |
HU Jie, SONG Yukui, CHAI Yuye, et al. Preparation and properties of aqueous gel via waterworn polyurethane acrylate grafting keratin[J]. Leather Science and Engingeering, 2015, 25(3):5. | |
[49] | 孙丽莹, 高文伟, 李珊, 等. 角蛋白提取方法进展及提取技术应用选择建议[J]. 皮革科学与工程, 2020, 30(3):8. |
SUN Liying, GAO Wenwei, LI Shan, et al. Progress in keratin extraction methods and suggestions on selection of extraction techniques for application[J]. Leather Science and Engingeering, 2020, 30(3):8. | |
[50] |
ZHU L L, SHEN D K, LUO K H. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102.
doi: 10.1016/j.jhazmat.2020.122102 |
[51] |
MENDOZA-CASTILLO D I, REYNEL-AVILA H E, BONILLA-PETRICIOLET A, et al. Synthesis of denim waste-based adsorbents and their application in water defluoridation[J]. Journal of Molecular Liquids, 2016, 221: 469-478.
doi: 10.1016/j.molliq.2016.06.005 |
[52] | 张旭, 柏广宇, 高宝昌, 等. 改性汉麻材料对水体中重金属离子吸附性能研究[J]. 化学工程师, 2021, 3: 39-41. |
ZHANG Xu, BAI Guangyu, GAO Baochang, et al. Adsorption of heavy metal ions in water by modified hemp material[J]. Chemical Engineer, 2021, 3: 39-41. | |
[53] | 胡玉洁, 巫拱生, 李青山. 改性罗布麻纤维的吸附功能研究[J]. 功能高分子学报, 2003, 4: 247-250. |
HU Yujie, WU Gongsheng, LI Qingshan. Study on adsorption function of modified apocynum fiber[J]. Journal of Functional Polymers, 2003, 4: 247-250. | |
[54] |
GORE P M, NAEBE M, WANG X G, et al. Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater[J]. Journal of Hazardous Materials, 2020, 389: 121823.
doi: 10.1016/j.jhazmat.2019.121823 |
[55] |
MORIWAKI H, KITAJIMA S, KURASHIMA M, et al. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water[J]. Journal of Hazardous Materials, 2009, 165: 266-70.
doi: 10.1016/j.jhazmat.2008.09.116 |
[56] |
HYUNG-MIN Choi, MOREAU J P. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy[J]. Microscopy Research and Technique, 1993, 25: 447-455.
pmid: 8400439 |
[57] |
RADETIC M, RADOJEVIC D, ILIC V, et al. Recycled wool-based nonwoven material for decolorisation of dyehouse effluents[J]. International Journal of Clothing Science and Technology, 2009, 21: 109-116.
doi: 10.1108/09556220910933835 |
[58] |
DAKIKY M, KHAMIS M, MANASSRA A, et al. Selective adsorption of chromium (Vi) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research, 2002, 6: 533-540.
doi: 10.1016/S1093-0191(01)00079-X |
[59] |
DOU Y, LIU X, YU K, et al. Biomass porous carbon derived from jute fiber as anode materials for lithium-ion batteries[J]. Diamond and Related Materials, 2019, 98: 107514.
doi: 10.1016/j.diamond.2019.107514 |
[60] |
REMADEVI R, AL FARUQUE M A, ZHANG J Z, et al. Electrically conductive honeycomb structured graphene composites from natural protein fibre waste[J]. Materials Letters, 2020, 264: 127311.
doi: 10.1016/j.matlet.2020.127311 |
[61] | CATALDI P, CONDURACHE O, SPIRITO D, et al. Keratin-graphene nanocomposite: transformation of waste wool in electronic devices[J]. ACS Sustainable Chemistry & Engineering, 2019(7): 12544-12551. |
[62] |
BHATTI H N, HANIF M A, QASIM M, et al. Biodiesel production from waste tallow[J]. Fuel, 2008, 87: 2961-2966.
doi: 10.1016/j.fuel.2008.04.016 |
[63] |
NIGAM P S, SINGH A. Production of liquid biofuels from renewable resources[J]. Progress in Energy and Combustion Science, 2011, 37(1): 52-68.
doi: 10.1016/j.pecs.2010.01.003 |
[64] |
SARKAR N, GHOSH S K, BANNERJEE S, et al. Bioethanol production from agricultural wastes: an overview[J]. Renewable Energy, 2012, 37(1): 19-27.
doi: 10.1016/j.renene.2011.06.045 |
[65] |
GHOLAMZAD E, KERIMI K, MASOOMI M. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253: 40-45.
doi: 10.1016/j.cej.2014.04.109 |
[66] |
ISMAIL Z Z, TALIB A R. Recycled medical cotton industry waste as a source of biogas recovery[J]. Journal of Cleaner Production, 2016, 112: 4413-4418.
doi: 10.1016/j.jclepro.2015.06.069 |
[67] |
KABIR M M, FORGACS G, HORVATH I S. Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment[J]. Process Biochemistry, 2013, 48(4): 575-580.
doi: 10.1016/j.procbio.2013.02.029 |
[68] |
KIM D K, KIM K B, KIM Y H, et al. Recycled silk wastes as feed ingredient for poultry[J]. Fiber, 2002, 58, 106-110.
doi: 10.2115/fiber.58.106 |
[69] | GORECKI R S, GORECKI M T. Utilization of waste wool as substrate amendment in pot cultivation of tomato, sweet pepper, and eggplant[J]. Polish Journal of Environmental Studies, 2010, 19(5): 1083-1087. |
[70] |
NUNES L J R, GODINA R, MATIAS J C O, et al. Economic and environmental benefits of using textile waste for the production of thermal energy[J]. Journal of Cleaner Production, 2018, 171: 1353-1360.
doi: 10.1016/j.jclepro.2017.10.154 |
[71] |
NASRI-NASRABADI B, WANG X, BYRNE N, et al. Perpetual colour: accessing the colourfastness of regenerated cellulose fibres from coloured cotton waste[J]. Journal of The Textile Institute, 2020, 111(12):1-10.
doi: 10.1080/00405000.2019.1626611 |
[72] | 樊威, 刘红霞, 苗亚萍, 等.基于废旧纺织品的彩色再生纤维素导电长丝的制备方法:202110908027.0[P]. 2021-10-26. |
FAN Wei, LIU Hongxia, MIAO Yaping, et al. Preparation method of color regenerated cellulose conductive filament based on wasting textile:202110908027.0[P].2021-10-26. |
[1] | 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171. |
[2] | 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185. |
[3] | 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112. |
[4] | 韩非, 郎晨宏, 邱夷平. 废旧纺织品资源化循环利用研究进展[J]. 纺织学报, 2022, 43(01): 96-105. |
[5] | 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177. |
[6] | 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40. |
[7] | 杜欢政, 陆莎, 孙荐, 康乾. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(06): 1-7. |
[8] | 涂莉, 孟家光, 李欣, 李娟子. 废旧毛/丝/棉混纺面料的组分分析及其剥色工艺[J]. 纺织学报, 2019, 40(11): 75-80. |
[9] | 刘春丽 陈慰来 梁佳琦. 废纺再生毡基材料的制备及其性能[J]. 纺织学报, 2018, 39(11): 56-60. |
[10] | 韦树琛 丁欣 李文霞 王华平 张朔. 废旧聚酯纤维制品近红外定量分析模型的建立及验证[J]. 纺织学报, 2018, 39(07): 63-68. |
[11] | 陈思 邱夷平 施楣梧 蒋秋冉. 用于天然纤维素纤维纱线的无浆料浆纱技术[J]. 纺织学报, 2016, 37(2): 85-91. |
[12] | 郑环达 郑来久. 超临界流体染整技术研究进展[J]. 纺织学报, 2015, 36(09): 141-148. |
[13] | 刘建平;高卫东. 服装用天然纤维材料的文化构成[J]. 纺织学报, 2007, 28(1): 99-101. |
[14] | 程隆棣. 细旦混纺纤维细度配比问题的研究[J]. 纺织学报, 1999, 20(06): 15-16. |
|