纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 63-69.doi: 10.13475/j.fzxb.20210701908

• 纤维材料 • 上一篇    下一篇

纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响

陈锋1,2(), 姬忠礼1,2, 于文瀚1,2, 董伍强1,2, 王倩琳3, 王德国1,2   

  1. 1.中国石油大学(北京) 过程流体过滤与分离技术北京市重点实验室, 北京 102249
    2.中国石油大学(北京)机械与储运工程学院, 北京 102249
    3.北京化工大学 机电工程学院, 北京 100029
  • 收稿日期:2021-07-06 修回日期:2022-01-15 出版日期:2022-05-15 发布日期:2022-05-30
  • 作者简介:陈锋(1991—),男,讲师,博士。主要研究方向为聚结过滤用纤维材料。E-mail: chenfeng@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(22008259);中国博士后科学基金资助项目(2019M660930);中央高校基本科研业务费专项资金资助项目(2462022YJRC001);中央高校基本科研业务费专项资金资助项目(2462020YXZZ043)

Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters

CHEN Feng1,2(), JI Zhongli1,2, YU Wenhan1,2, DONG Wuqiang1,2, WANG Qianlin3, WANG Deguo1,2   

  1. 1. Beijing Key Laboratory of Process Fluid Filtration and Separation Technology, China University of Petroleum, Beijing 102249, China
    2. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
    3. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2021-07-06 Revised:2022-01-15 Published:2022-05-15 Online:2022-05-30

摘要:

为提高纳米纤维膜的气液过滤性能,通过静电纺丝技术制备不同组分纳米纤维膜,与不同润湿性玻璃纤维基材组成三明治结构复合过滤材料,分析了纳米纤维膜润湿性对复合过滤材料气液过滤性能的影响以及玻璃纤维基材与纳米纤维膜间润湿性的作用关系。结果表明:亲油玻璃纤维基材与纳米纤维膜制备的复合过滤材料对亚微米液滴的过滤效率较原玻璃纤维基材升高11.9%,品质因子随纳米纤维膜润湿性增大而增大;疏油玻璃纤维基材与纳米纤维膜制备的复合过滤材料的稳态压降大幅上升,过滤效率增加明显,但对亚微米和微米级液滴的品质因子均降低,较原玻璃纤维基材分别下降57%和63%;复合过滤材料的过滤性能受基材润湿性影响,仅当背风基材侧亲油时添加纳米纤维膜可提高综合过滤性能。

关键词: 静电纺丝, 纳米纤维膜, 玻璃纤维基材, 润湿性, 复合过滤材料, 气液过滤性能

Abstract:

In order to improve the gas-liquid filtration performance of nanofibers membrane, nanofibers membrane with different material components were prepared by electrospinning, and sandwiched composite filters were created when combining such nanofibers membrane with glass fiber substrates with different degrees of wettability. The influence of the nanofiber membrane wettability on the gas-liquid filtration performance of composite filter was analyzed, and the relationship between the wettability of glass fiber substrates and nanofibers membrane was studied. The results show that after the nanofibers membrane are added to the oleophilic substrate, the filtration efficiency for submicron droplets increases by 11.9% when compared to the original glass fiber substrates, and the quality factor increases with the increase of nanofiber membrane wettability. The steady-state pressure drop increases significantly after adding nanofibers membrane to the oleophobic glass fiber substrate, but the quality factors for submicron and micron droplets both decrease even when the filtration efficiency also increases greatly, with the highest decrease of 57% and 63% respectively when compared to the original glass fiber substrates. The filtration performance of the composite filter material is controlled by the substrate wettability. The comprehensive filtration performance is improved only when the substrate filter located on the leeward side is oleophilic.

Key words: electrospinning, nanofiber membrane, glass fiber substrate, wettability, composite filter, gas-liquid filtration performance

中图分类号: 

  • TE832

表1

玻璃纤维基材物性参数表"

基材类型 厚度/mm 平均直径/
μm
平均孔
径/μm
泡点孔
径/μm
亲油基材 0.46 3.07 7.76 26.11
疏油基材 0.56 3.09 7.76 25.35

图1

静电纺丝系统示意图"

图2

过滤材料气液过滤性能实验系统"

图3

不同聚合物组分的纳米纤维膜SEM照片(×10 000)"

图4

不同过滤材料表面的液滴接触角"

图5

基于亲油基材的复合过滤材料过程压降曲线"

图6

基于亲油基材的复合过滤材料稳态过滤效率"

图7

基于亲油基材的复合过滤材料稳态品质因子"

图8

基于疏油基材的复合过滤材料过程压降曲线"

图9

基于疏油基材的复合过滤材料稳态过滤效率"

图10

基于疏油基材的复合过滤材料稳态品质因子"

图11

不同过滤材料的过程压降变化曲线"

图12

不同过滤材料的稳态过滤效率"

图13

不同过滤材料的稳态品质因子"

[1] WEI X, ZHOU H, CHEN F, et al. High-efficiency low-resistance oil-mist coalescence filtration using fibrous filters with thickness-direction asymmetric wettability[J]. Advanced Functional Materials, 2019, 29: 1806302.
doi: 10.1002/adfm.201806302
[2] 陈锋, 姬忠礼, 齐强强. 孔径梯度分布对亲油型滤材气液过滤性能的影响[J]. 化工学报, 2017, 68(4): 1442-1451.
CHEN Feng, JI Zhongli, QI Qiangqiang. Influence of pore size distribution on gas-liquid filtration performance of oleophilic filters[J]. CIESC Journal, 2017, 68(4): 1442-1451.
[3] KOLB H E, KASPER G. Mist filters: how steady is their "steady state"?[J]. Chemical Engineering Science, 2019, 204: 118-127.
doi: 10.1016/j.ces.2019.03.072
[4] CHANG C, JI Z L, LIU J L. Pressure drop and saturation of nonwettable coalescing filters at different loading rates[J]. AIChE Journal, 2018, 64(1): 180-186.
doi: 10.1002/aic.15863
[5] 竺哲欣, 马晓吉, 夏林, 等. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(5): 9-15.
ZHU Zhexin, MA Xiaoji, XIA Lin, et al. Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion[J]. Journal of Textile Research, 2021, 42(5): 9-15.
[6] 万雨彩, 刘迎, 王旭, 等. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(4): 15-20.
WAN Yucai, LIU Ying, WANG Xu, et al. Structure and property of poly (vinyl alcohol-co-ethylene) nanofiber/polypropylene microfiber scaffold: a composite air filter with high filtration performance[J]. Journal of Textile Research, 2020, 41(4): 15-20.
[7] 张恒, 甄琪, 刘雍, 等. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(9): 28-34.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure[J]. Journal of Textile Research, 2019, 40(9): 28-34.
[8] ABISHEK S, MEAD-HUNTER R, KING A J C, et al. Capture and re-entrainment of microdroplets on fibers[J]. Physical Review E, 2019, 100: 042803.
doi: 10.1103/PhysRevE.100.042803
[9] MEAD-HUNTER R, MULLINS B J, BECKER T, et al. Evaluation of the force required to move a coalesced liquid droplet along a fiber[J]. Langmuir, 2011, 27(1): 227-232.
doi: 10.1021/la104147s
[10] MEAD-HUNTER R, BERGEN T, BECKER T, et al. Sliding/rolling phobic droplets along a fiber: measurement of interfacial forces[J]. Langmuir, 2012, 28(7): 3483-3488.
doi: 10.1021/la2046838
[11] CHEN F, JI Z L, QI Q Q. Effect of pore size and layers on filtration performance of coalescing filters with different wettabilities[J]. Separation and Purification Technology, 2018, 201: 71-78.
doi: 10.1016/j.seppur.2018.03.004
[12] PATEL S U, KULKARNI P S, PATEL S U, et al. The effect of surface energy of woven drainage channels in coalescing filters[J]. Separation and Purification Technology, 2012, 87: 54-61.
doi: 10.1016/j.seppur.2011.11.021
[13] MULLINS B J, MEAD-HUNTER R, PITTA R N, et al. Comparative performance of philic and phobic oil-mist filters[J]. AIChE Journal, 2014, 60(8): 2976-2984.
doi: 10.1002/aic.14479
[14] WEI X, CHEN F, WANG H X, et al. Efficient removal of aerosol oil-mists using superoleophobic filters[J]. Journal of Materials Chemistry A, 2018, 6: 871-877.
doi: 10.1039/C7TA10045K
[15] PENNER T, MEYER J, DITTLER A. Oleophilic and oleophobic media combinations-influence on oil mist filter operating performance[J]. Separation and Purification Technology, 2021, 261: 118255.
doi: 10.1016/j.seppur.2020.118255
[16] KAMPA D, WURSTER S, BUZENGEIGER J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58(1): 313-324.
doi: 10.1016/j.ijmultiphaseflow.2013.10.007
[1] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[2] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[3] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[4] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[5] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[6] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[7] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[8] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[9] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[10] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[11] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[12] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[13] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[14] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[15] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!