纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 1-8.doi: 10.13475/j.fzxb.20220104008

• 高性能纺织结构柔性材料制备及应用 •    下一篇

聚氯乙烯膜结构复合材料的光氧老化行为及评价

郭珊珊1, 郝恩全2, 李宏杰2, 王霖琳1, 蒋金华1(), 陈南梁1   

  1. 1.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    2.浙江明士达股份有限公司, 浙江 嘉兴 314400
  • 收稿日期:2022-01-17 修回日期:2022-03-28 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 蒋金华
  • 作者简介:郭珊珊(1984—),女,博士生。主要研究方向为涂层膜材料服役性能。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303300);上海市科委上海市自然科学基金项目(20ZR1400600);中央高校基本科研业务费专项资金项目(2232021G-06);中央高校基本科研业务费专项资金项目(2232020A-05)

Photo oxidative aging behavior and evaluation of polyvinyl chloride membrane structural composites

GUO Shanshan1, HAO Enquan2, LI Hongjie2, WANG Linlin1, JIANG Jinhua1(), CHEN Nanliang1   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University,Shanghai 201620, China
    2. Zhejiang MSD Group Share Co., Ltd., Jiaxing, Zhejiang 314400, China
  • Received:2022-01-17 Revised:2022-03-28 Published:2022-06-15 Online:2022-07-15
  • Contact: JIANG Jinhua

摘要:

为探究经编和机织涂层膜结构复合材料的光氧老化行为,以涤纶经编和机织聚氯乙烯(PVC)涂层膜结构复合材料为对象,选取6种织物试样,研究其在紫外光辐射下的老化现象,同时与涤纶纱线力学性能的老化效应进行对比;同时研究了老化实验过程中复合材料的光氧老化行为及力学性能变化,并分析了其微观损伤机制。结果表明:涂层膜对基布纱线起到了很好的保护作用;经编织物膜结构材料老化后的初始模量均高于机织物膜结构材料,断裂强力保持率则反之;在辐射能为82.08×103 kJ/m2时,织物的横密和纵密均为24根/(5 cm)的单面经编膜结构复合材料断裂强力保持率仅为62.4%,且其涂层对基布的保护作用已失效,涂层膜表面严重粉化和黏结;另外5种双面膜结构试样断裂强力保持率均在85%以上,在此辐射能范围内涂层面变粗糙,但仅出现少量沟槽,表现出良好的抗光氧老化性能。

关键词: 聚氯乙烯膜, 复合材料, 光氧老化, 紫外辐射能, 断裂强力, 羰基指数

Abstract:

In order to investigate the different photo-oxygen aging behavior of membrane coated warp knitted and woven structure composites, accelerated aging behavior of polyester warp knitted and woven fabric reinforced polyvinyl chloride (PVC) membrane composites was studied under ultraviolet irradiation. Six types of fabrics were selected for making the composites, and the aging was characterized by the mechanical properties of polyester yarn. The test results show that the coating membrane has a good protective effect on the yarns in the fabrics. The initial modulus of warp knitted fabric is higher than that of woven fabric, but the retention rate of breaking strength is lower. At the irradiation energy of 82.08×103 kJ/m2, the fracture strength retention rate of the single-face warp-knitted membrane structural composite with both 24 course and wale densities is only 62.4%, and the coating of the single-face membrane structural material is no longer effective in protecting the substrate fabric with the coating membrane granulized and clustered. However, the retention rates of breaking strength of the five double-faced samples are all above 85%. Within the irradiation energy range, the coated surface becomes rough, with few grooves appearing, demonstrating good anti-photo oxygen aging performance.

Key words: polyvinyl chloride membrane, composite, oxidative aging, ultraviolet irradiation energy, breaking strength, carbonyl index

中图分类号: 

  • TS186

表1

试样规格表"

试样
编号
针织物密度 机织物密度 复合材料
横密 纵密 经向 纬向 厚度/
mm
面密度/
(g·m-2)
K1 18 18 0.41 365.10
K2 24 24 0.36 436.53
K3 36 36 0.51 651.16
W1 72 72 0.50 635.73
W2 90 90 0.64 812.16
W3 118 118 0.75 931.50

表2

不同时间试样的辐射能"

老化时
间/h
辐射强度/
(W·m-2)
累积辐射能/
(103 kJ·m-2)
0 0.0 0.00
200 5.3 16.26
400 5.2 32.18
600 5.3 49.25
800 5.4 65.34
1 000 5.2 82.08

图1

K1、W1原样及光氧老化处理1 000 h后各试样表面SEM照片"

图2

K1、K2、W原样及光氧老化处理1 000 h后各试样截面SEM照片"

图3

1 000 h光氧老化处理后6种试样的红外光谱图"

图4

光氧老化条件下PVC的分子式以及变化"

图5

6种试样老化1 000 h后的羰基峰段红外光谱曲线"

图6

羰基指数随辐射能的变化曲线"

图7

涤纶纱线老化前后应力-应变曲线图"

图8

6种织物光氧老化前后横纵向应力-应变曲线图"

[1] YANG Xudong, XU Xiaowei, YAN Yongsheng, et al. Photo-oxidation of PVC-coated membrane material under different light sources[J]. Asian Journal of Chemistry, 2014, 26(17): 5777-5782.
doi: 10.14233/ajchem.2014.18204
[2] VAIDA D, MILDA J, RAIMONDAS B, et al. Investigation of some weathering impacts on tearing properties of PVC-coated fabrics used for architectural purposes[J]. Journal of Industrial Textiles, 2020. DOI: 10.1177/152808372098238.
doi: 10.1177/152808372098238
[3] TOOMA M, NAJIM T, ALSALHY Q. Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application[J]. Desalination, 2015, 373: 58-70.
doi: 10.1016/j.desal.2015.07.008
[4] BENAVIDES R, CASTILLO B M, CASTANEDA A O, et al. Different thermo-oxidative degradation routes in poly(vinyl chloride)[J]. Polymer Degradation and Stability, 2001, 73:417-423.
doi: 10.1016/S0141-3910(01)00122-7
[5] MARQUIONI M, SUBURO A. Photo-damage, photo-protection and agerelated macular degeneration[J]. Photochemical & Photobiological Sciences, 2015, 14: 1560-1577.
[6] XU Q, LI F, MU W, et al. Effect of hygrothermal and alternating load coupled aging on CFRP/Al bonded joints[J]. International Journal of Adhesion and Adhesives, 2021, 109: 102912.
doi: 10.1016/j.ijadhadh.2021.102912
[7] EYUPOGLU C, EYUPOGLU S, MERDAN N. A multilayer perceptron artificial neural network model for estimation of ultraviolet protection properties of polyester microfiber fabric[J]. The Journal of The Textile Institute, 2021, 112(9): 1403-1416.
doi: 10.1080/00405000.2020.1819000
[8] MAZZON G, CONTARDI M, QUILEZ-MOLINA A, et al. Antioxidant and hydrophobic cotton fabric resisting accelerated ageing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126061.
doi: 10.1016/j.colsurfa.2020.126061
[9] KŁOSOWSKI P, ZERDZICKI K, WOZNICA K. Artificial thermal ageing of polyester reinforced and polyvinyl chloride coated technical fabric[J]. Journal of Visualized Experiments, 2020(155): 60737.
[10] 徐晓伟, 杨旭东, 胡淳. 聚氯乙烯膜材料的人工加速老化性能[J]. 纺织学报, 2014, 35(10):24-29.
XU Xiaowei, YANG Xudong, HU Chun. Artificial accelerated aging properties of polyvinyl chloride coating membrane material[J]. Journal of Textile Research, 2014, 35(10):24-29.
[11] BYUN J, WANG Yiqi, KWAN L, et al. Stitching effect on flexural and inter laminar properties of MWK textile composites[J]. Composites Research, 2015, 28(3): 136-141.
doi: 10.7234/composres.2015.28.3.136
[12] WAN Yumin, ZHANG Fa, GU Bohong, et al. Predicting dynamic in-plane compressive properties of multi-axial multi-layer warp-knitted composites with a meso-model[J]. Composites Part B: Engineering, 2015, 77: 278-290.
doi: 10.1016/j.compositesb.2015.03.060
[13] LI Diansen, JIANG Nan, JIANG Lei, et al. Experimental study on the bending properties and failure mechanism of 3D multi-axial warp knitted composites at room and liquid nitrogen temperatures[J]. Journal of Composite Materials, 2016, 50(4): 557-571.
doi: 10.1177/0021998315579299
[14] KOERNER G, KOERNER Y, HSUAN Y. The durability of geosynthetics[M]. Cambridge: Woodhead Publishing, 2007:36-65.
[15] 赵兴民, 赵建平, 燕集中. 高密度聚乙烯管材光氧老化性能及寿命预测[J]. 中国塑料, 2021, 35(6):33-39.
doi: 10.19491/j.issn.1001-9278.2021.06.006
ZHAO Xingmin, ZHAO Jianping, YAN Jizhong. Photo-oxidation aging performance and life prediction for high-density polyethylene pipe[J]. China Plastics, 2021, 35(6):33-39.
doi: 10.19491/j.issn.1001-9278.2021.06.006
[16] MIHAI B, CORNELIA V, SMARANDA R, et al. Study of the natural ageing of PVC insulation for electrical cables[J]. Polymer Degradation and Stability, 2000, 67: 209-221.
doi: 10.1016/S0141-3910(99)00114-7
[17] ARNOLD J C, MAUND B. The properties of recycled PVC bottle compounds: Ⅱ: reprocessing stability[J]. Polymer Engineering and Science, 1999, 39: 1242-1250.
[18] ZERDZICKI K, KLOSOWSKI P, WOZNICA K. Influence of service ageing on polyester-reinforced polyvinyl chloride-coated fabrics reported through mathematical material models[J]. Textile Research Journal, 2019, 89(8): 1472-1487.
doi: 10.1177/0040517518773374
[19] 黄文捷, 黄雨林. 高分子材料老化试验方法简介[J]. 研究与开发, 2009(9): 71-80.
HUANG Wenjie, HUANG Yulin. Introduction of polymer material aging test[J]. Research and Development, 2009(9): 71-80.
[1] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[2] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[3] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[4] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[5] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
[6] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[7] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[8] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[9] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[10] 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20.
[11] 黄宏博, 韩宗保, 郭恒, 姚金波, 姜会钰, 夏治刚, 王运利. 热湿处理对免烫羊毛织物保形性能的影响[J]. 纺织学报, 2021, 42(12): 119-124.
[12] 朱维维, 管丽媛, 龙家杰, 施楣梧. 超临界CO2流体处理时间对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2021, 42(12): 97-102.
[13] 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89.
[14] 陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54.
[15] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!