纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 107-114.doi: 10.13475/j.fzxb.20210304108

• 染整与化学品 • 上一篇    下一篇

阻燃疏水棉织物的制备及其性能

李平阳1,2,3,4(), 付灿1, 董玲玲1,2,3,4   

  1. 1.上海化工研究院有限公司, 上海 200062
    2.聚烯烃催化技术与高性能材料国家重点实验室, 上海 200062
    3.上海功能阻燃材料工程技术中心, 上海 200062
    4.上海市聚烯烃催化技术重点实验室, 上海 200062
  • 收稿日期:2021-03-11 修回日期:2022-03-20 出版日期:2022-06-15 发布日期:2022-07-15
  • 作者简介:李平阳(1990—),女,工程师。主要研究方向为阻燃剂合成与功能高分子材料改性。E-mail: anna28@126.com
  • 基金资助:
    上海市科学技术委员会科技创新基地项目(19DZ2253700);上海市科学技术委员会“创新行动计划”企业国际科技合作项目(21520730600)

Preparation and performance of flame retardant and hydrophobic cotton fabric

LI Pingyang1,2,3,4(), FU Can1, DONG Lingling1,2,3,4   

  1. 1. Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China
    2. State Key Laboratory of Polyolefins and Catalysis, Shanghai 200062, China
    3. Shanghai Engineering Research Center of Functional Flame Retardant Materials, Shanghai 200062, China
    4. Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai 200062, China
  • Received:2021-03-11 Revised:2022-03-20 Published:2022-06-15 Online:2022-07-15

摘要:

为解决棉织物易燃助燃、疏水性能差的问题,采用一步浸渍法,由苯基膦酸(PA)和3-氨丙基三乙氧基硅烷(APTES)协同制备阻燃疏水棉织物。对阻燃疏水棉织物的热稳定性、燃烧性、疏水性及耐洗性等进行测试,并研究了其阻燃机制。结果表明:PA和APTES成功整理到棉织物上,织物质量增加率为15.3%;整理后织物的极限氧指数为29.4%,离火自熄,损毁长度为10.4 cm,热稳定性显著提高,可燃性气体释放量大大降低,并形成了石墨化程度较高的炭层;水接触角为139°,可不被多种液体打湿,兼具优异的阻燃和疏水性能。这种方法操作简单,无卤添加,对棉织物的手感和白度影响较小,且具有一定的耐洗性能。

关键词: 棉织物, 阻燃, 疏水, 离火自熄, 阻燃机制

Abstract:

In order to address high flammability and poor hydrophobic performance of cotton fabrics, the coating consisting of phenylphosphonic acid (PA) and (3-aminopropyl)triethoxysilane (APTES) were synthesized through one-pot method, in which functional cotton fabrics embraced with excellent flame retardant and hydrophobic properties, simultaneously. The thermal stability,flammability, hydrophobicity, and washing resistance of the prepared cotton fabrics were tested. Moreover, the flame-retardant mechanism was further investigated. The results showed that APTES and PA were successfully loaded on cotton fabrics. The weight loading was 15.3%. Limiting oxygen index value of functional cotton fabrics reached as high as 29.4%. The obtained fabrics extinguished immediately after removed from the ignitor. The damage length was 10.4 cm. The thermal stability was remarkably improved. Meanwhile, the release of flammable species obviously decreased. Char layer with higher graphitization degree formed during the fire. On the other hand, the water contact angle of functional cotton increased to 139°, which could not be wetted by several different liquid droplets. Based on the above results, the prepared cotton fabric exhibited excellent flame retardancy and good hydrophobicity indeed. This one-pot approach is convenient and eco-friendly.Besides, this finishing process showed few influences on feel and whiteness of cotton. The enhanced washing fastness was also achieved in this work.

Key words: cotton fabrics, flame retardant, hydrophobicity, extinguished immediately after removing the ignitor, flame-retardant mechanism

中图分类号: 

  • TS195.5

表1

疏水阻燃液成分及棉织物整理后质量增加率"

样品
编号
质量分数/% pH值 质量增
加率/%
PA APTES H2O
C1 0 0 0 0
C2 0 9 91 10.9 11.8
C3 6 0 94 1.5 10.9
C4 6 9 85 5.4 15.3

图1

试样制备过程示意图"

图2

C1和C4样品的电镜照片及能谱分析"

图3

C1和C4样品的红外光谱"

图4

C1和C4样品在氮气条件下的热重和热失重曲线"

图5

C1和C4样品在空气条件下的热重和微分热重曲线"

表2

整理前后棉织物的LOI值及垂直燃烧变化"

样品编号 LOI值/% 损毁长度/cm
C1 17.4 30.0
C2 21.1 30.0
C3 26.5 30.0
C4 29.4 10.4

图6

C1、C2、C3和C4样品垂直燃烧测试5和12 s后的图像"

图7

C1和C4样品的水接触角"

图8

不同液滴滴到C4样品表面的图像"

表3

洗涤后C4样品LOI值及水接触角测试结果"

洗涤次数 LOI值/% 接触角/(°)
1 21.4 133.5
5 21.4 135.4
30 18.8 131.7

表4

棉织物的白度与手感"

样品编号 白度/% 手感/级
C1 61.72 5
C2 57.57 4
C3 4~5
C4 57.28 4

图9

C1和C4样品主要挥发裂解产物的吸收谱图"

图10

炭渣的SEM照片"

图11

炭渣结构的拉曼光谱"

图12

C4炭渣的高分辨率光谱"

图13

C4样品炭渣的红外光谱图"

[1] 赵海梅, 张凤涛, 陆海明. 浅谈棉织物阻燃方法[J]. 山东纺织科技, 2006(1):40-42.
ZHAO Haimei, ZHANG Fengtao, LU Haiming. Elementary introduction on the methods of cotton flame-retardant fabric[J]. Shandong Textile Science & Technology, 2006(1):40-42.
[2] LI S, HUANG J, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017, 5(1): 3 l-55.
[3] CHEN S, LI X, LI Y, et al. Intumescent Flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9 (4):4070-4076.
doi: 10.1021/acsnano.5b00121
[4] ALONGI J, CIOBANU M, MALUCELLI G. Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes[J]. Carbohydrate Polymers, 2011, 85 (3):599-608.
doi: 10.1016/j.carbpol.2011.03.024
[5] ZOPE I S, FOO S, SEAH D G J, et al. Development and evaluation of a water-based flame retardant spray coating for cotton fabrics[J]. ACS Applied Materials & Interfaces, 2017, 9 (46):40782-40791.
[6] LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533:198-206.
doi: 10.1016/j.jcis.2018.08.060
[7] ZHANG D, WILLIAMS B L, SHRESTHA S B, et al. Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques[J]. Journal of Colloid and Interface Science, 2017, 505:892-899.
doi: 10.1016/j.jcis.2017.06.087
[8] NABIPOUR H, WANG X, SONG L, et al. Hydrophobic and flame-retardant finishing of cotton fabrics for water-oil separation[J]. Cellulose, 2020, 27 (7):4145-4159.
doi: 10.1007/s10570-020-03057-1
[9] CHANCHAL K K, WANG X, HOU Y, et al. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol-gel process of organo-silane[J]. Carbohydrate Polymers, 2018, 181:833-840.
doi: 10.1016/j.carbpol.2017.11.069
[10] 张群朝. 硅烷偶联剂的作用机理、种类及其应用[C]// 蒋涛, 黄世强. 2014硅橡胶材料技术应用与发展趋势研讨会论文集. 武汉: 湖北大学, 2014:41-47.
ZHANG Qunchao. Action mechanism, types and application of silane coupling agents[C]// JIANG Tao,HUANG Shiqiang.Symposium on Technology Application and Development Trend of Silicone Rubber Materials. Wuhan: Hubei University, 2014:41-47.
[11] 刘龙祥. 阻燃与超疏水涤棉织物的制备及其性能研究[D]. 合肥: 中国科学技术大学, 2019:1-70.
LIU Longxiang. Study on preparation and performance of flame-retardent and superhydrophobicpolyester-cotton fabric[D]. Hefei: University of Science and Technology of China, 2019:1-70.
[12] 冉国文, 许贺, 刘晓东, 等. KH550改性PEPA对PP/IFR体系阻燃、耐水和力学性能的影响[J]. 塑料工业, 2017(10):134-138.
RAN Guowen, XU He, LIU Xiaodong, et al. Improving the flame retardancy,water resistance and mechanical properties of PP/IFR composites by introducing KH550 modified PEPA[J]. China Plastics Industry, 2017(10):134-138.
[13] XU D, WANG S, WANG Y, et al. Preparation and mechanism of flame-retardant cotton fabric with phosphoramidate siloxane polymer through multistep coating[J]. Polymers, 2020. DOI: 10.3390/polym12071538.
doi: 10.3390/polym12071538
[1] 王宗乾, 程绿竹, 金鲜花, 夏丽萍. 基于紫外光谱法的纯棉织物中氯菊酯含量检测方法[J]. 纺织学报, 2022, 43(06): 127-132.
[2] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[3] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[4] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[5] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[6] 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101.
[7] 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89.
[8] 金文杰, 程献伟, 关晋平, 陈国强. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(02): 171-175.
[9] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[10] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[11] 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9.
[12] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[13] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[14] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[15] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!