纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 165-170.doi: 10.13475/j.fzxb.20210302006

• 机械与器材 • 上一篇    下一篇

不同流通间隙排布条件下碳纤维束展纤行为研究

牛雪娟1,2(), 徐妍慧1   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2021-03-04 修回日期:2022-03-13 出版日期:2022-06-15 发布日期:2022-07-15
  • 作者简介:牛雪娟(1977—),女,教授,博士。主要研究方向为机电一体化。E-mail: niuxuejuan@tiangong.edu.cn
  • 基金资助:
    天津市自然科学基金面上项目(18JCYBJC89000)

Study on spreading behavior of carbon fiber bundles under different fractal flow path conditions

NIU Xuejuan1,2(), XU Yanhui1   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2021-03-04 Revised:2022-03-13 Published:2022-06-15 Online:2022-07-15

摘要:

为探究不同流通间隙排布条件下气流展纤器内部流场的分布规律及流场内碳纤维束的受力情况,采用离散单元法,将碳纤维离散为纤维微元,对流场中数千纤维微元的扩散特性进行建模。通过将纤维微元所受各力与流体阻力进行量级比较,最终得到纤维微元运动方程。结合展纤工艺设置相应边界条件,利用COMSOL对流体-纤维微元间的相互作用进行数值模拟,研究流通间隙位置对碳纤维束的运动特性的影响。结果表明,随着流通间隙间距离的增大,流场中促使纤维展宽区域的长度增长,有利于纤维持续受力展开。随着最右流通间隙到纤维出口的距离逐渐减小,阻碍纤维展宽区域的长度减小,有利于纤维束的展宽。

关键词: 纤维微元运动, 碳纤维丝束, 流固耦合, 有限元仿真, 展纤器

Abstract:

This study focuses on the distribution of flow field inside the airflow spreader and the force on carbon fiber bundles in the flow field under different fractal flow path conditions. The discrete element Method was used to model the spreading behavior of the thousands of filaments in the flow field. The characteristics of the flow field and the motion of the fiber discrete elements were modeled. By comparing the magnitudes of the forces on the fiber discrete elements to the magnitudes of the fluid resistance, equations of motion for the fiber discrete elements were finally established. With the particle tracking module of COMSOL, the fluid-fiber discrete element interaction was simulated numerically by setting the corresponding boundary conditions with the spreading process. The effect of the position of the fractal flow paths on the motion characteristics of the carbon fiber bundle was investigated. The results show that with the increase of the distance between the fractal flow paths, the length of the fiber spreading area in the flow field increases, which is beneficial for fiber spreading. It is found that shortening the distance between the rightmost fractal flow path to the fiber exit and reducing the length of the fiber spreading region help the fiber bundle spreading.

Key words: fiber micro motion, carbon fiber bundle, fluid-structure interaction, finite element simulation, airflow spreader

中图分类号: 

  • V258

图1

气流展纤机制"

图2

气流展纤器流场平面图"

图3

仿真结果对比图"

图4

纤维微元初始位置局部示意图"

图5

隔板处Y方向速度分量云图"

图6

隔板所在截线的Y方向速度分量"

图7

最外侧纤维微元受力"

表1

流场编号及流通间隙分布参数"

流场编号 L/mm H/mm
1-1 50 15
1-2 50 25
2-1 25 15
2-2 25 25
3-1 5 15
3-2 5 25

图8

各流场中隔板所在截线的Y方向速度分量"

图9

各流场中最外侧纤维微元受力"

图10

各流场中区域Ⅲ和区域Ⅳ的长度"

[1] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(4):51-57.
LU Hao, CHEN Yuan. A machine vision-based method for surface defect detection of carbon fiber prepreg[J]. Journal of Textile Research, 2020, 41(4):51-57.
[2] 高奇. 新形势下我国碳纤维产业发展探讨[J]. 合成纤维工业, 2019, 42(5):58-63.
GAO Qi. Discussion on the development of China's carbon fiber industry under the new situation[J]. China Synthetic Fiber Industry, 2019, 42(5):58-63.
[3] 黄博, 苑寿同, 薛嘉伦. 碳纤维气流扰动展纤器展纤过程仿真与实验[J]. 西安交通大学学报, 2015, 49(12):19-25.
HUANG Bo, YUAN Shudong, XUE Jialun. Simulation and experiment on fiber spreading process of carbon fiber spanner aith air turbule-nce[J]. Journal of Xi'an Jiaotong University, 2015, 49(12):19-25.
[4] 王思莹, 陈明, 尹协振. 柔性体与运动流体耦合问题研究进展综述[J]. 力学与实践, 2014, 36(5):566-573.
WANG Siyin, CHEN Ming, YIN Xiezhen. The research progress of the coupling problem of flexible body and moving fluid is reviewed[J]. Mechanics in Engineering, 2014, 36(5):566-573.
[5] 赵冉, 冯志华, 钱晨. 重力场内流体-纤维流固耦合分析[J]. 科学技术与工程, 2019, 19(15):12-19.
ZHAO Ran, FENG Zhihua, QIAN Chen. Fluid-fiber fluid-solid coupling analysis in gravity field[J]. Science Technology and Engineering, 2019, 19(15):12-19.
[6] 金玉珍, 李俊, 林培锋, 等. 纤维与气流耦合的数值模拟[J]. 纺织学报, 2015, 36(1):152-157.
JIN Yuzhen, LI Jun, LIN Peifeng, et al. Numerical simulation of fiber and air flow coupling[J]. Journal of Textile Research, 2015, 36(1):152-157.
[7] 尚珊珊, 子开, 郁崇文, 等. 喷气涡流纺旋转气流场及纱体运动的数值模拟[J]. 东华大学学报(自然科学版), 2019, 45(5):665-675.
SHANG Shanshan, YU Zikai, YU Chongwen, et al. Numerical simulation of spinning flow field and spinning motion of yarn[J]. Journal of Donghua University (Natural Science), 2019, 45(5):665-675.
[8] 郭臻, 李新荣, 卜兆宁, 等. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(5):131-135.
GUO Zhen, LI Xinrong, BU Zhaoning, et al. Three-dimensional numerical simulation of fiber motion in air-jet spinning[J]. Journal of Textile Research, 2019, 40(5):131-135.
[9] CHEN Jenchung, CHAO Chuenguang. Numerical simulation and experimental investigationfor design of a carbon fiber tow pneumatic spreading system[J]. Carbon, 2005, 43:2514-2529.
doi: 10.1016/j.carbon.2005.05.015
[10] 陈金良. 大丝束碳纤维展纤机理及实验研究[D]. 天津: 天津工业大学, 2020:54.
CHEN Jinliang. Large tow carbon fiber spreading mechanism and experimental research[D]. Tianjing: Tiangong University, 2020:54.
[11] 孙铭阳, 韦鲁滨, 朱学帅, 等. 液固分选流化床内颗粒动力学方程的简化及应用[J]. 中南大学学报(自然科学版), 2018, 49(6):1307-1314.
SUN Mingyang, WEI Lubin, ZHU Xueshuai, et al. Simplification and application of particle dynamics equation in liquid-solid separation fluidizedbed[J]. Journal of Central South University(Science and Technology), 2018, 49(6):1307-1314.
[12] 荆德吉, 葛少成, 刘剑. 基于颗粒运动方程的输煤皮带机尾逸尘规律[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(5):678-681.
JING Deji, GE Shaocheng, LIU Jian. The law of tail dust of coal conveyor belt based on particle motion equation[J]. Journal of Liaoning Technical University(Natural Science), 2012, 31(5):678-681.
[1] 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78.
[2] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[3] 张思宇, 余莉, 贾贺, 刘鑫. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(07): 108-114.
[4] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[5] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
[6] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
[7] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[8] 刘宜胜 裘燚斌 吴震宇. 气动折入装置异向射流场中纱线的运动规律[J]. 纺织学报, 2018, 39(07): 122-129.
[9] 李瑛慧 谢春萍 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47.
[10] 王占山 吕利叶 张佳丽 杨育林 张芳芳. 聚四氟乙烯/芳纶破斜纹织物衬垫拉伸性能数值仿真[J]. 纺织学报, 2016, 37(07): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!