纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 187-196.doi: 10.13475/j.fzxb.20210308610
GONG Xuebin1, LIU Yuanjun1,2,3(), ZHAO Xiaoming1,2,3
摘要:
为了进一步强化气凝胶材料热防护性能在各个领域的应用,并且确定未来热防护用气凝胶材料的主要研究方向,本文首先简要介绍了气凝胶的定义、结构特点、性能以及隔热机制。其次对气凝胶材料的应用进行了阐述。然后将用于热防护的气凝胶根据原材料进行分类,并分别对各类气凝胶的研究现状展开论述。二氧化硅气凝胶研究时间最长且成果已经较为成熟,其他各类气凝胶的研究还有很大的进步空间,可以针对各类气凝胶材料所具备的独特的优缺点展开研究,以满足各方面的特种需求。最后提出了气凝胶材料的未来发展趋势应该集中在提高耐温上限,消除高温后材料的粉尘问题,改善其力学性能,满足隔热承重一体化防护的需求,提高作为防护服隔热材料时的防水透湿性,创新制作工艺降低成本等方面。
中图分类号:
[1] | 史亚春, 李铁虎, 吕婧, 等. 气凝胶材料的研究进展[J]. 材料导报, 2013, 27(9): 20-24. |
SHI Yachun, LI Tiehu, LÜ Jing, et al. Research progress of aerogel materials[J]. Materials Reports, 2013, 27(9): 20-24. | |
[2] | MAZRAEH-SHAHI Z T, SHOUSHTARI A M, BAHRAMIAN A R, et al. Synthesis, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite[J]. Fibers and Polymers, 2014, 15(10): 2145-2149. |
[3] | 吴华敏. 二氧化硅气凝胶的研究现状及应用前景[J]. 化工管理, 2016(5): 208. |
WU Huamin. Research status and application prospects of silica aerogel[J]. Chemical Enterprise Management, 2016(5): 208. | |
[4] |
VENKATARAMAN M, MISHRA R, KOTRESH T M, et al. Aerogels for thermal insulation in high-performance textiles[J]. Textile Progress, 2016, 48(2): 55-118.
doi: 10.1080/00405167.2016.1179477 |
[5] | 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4): 9-15. |
XING Yajuan, SUN Bo, GAO Kun, et al. Research status of spacecraft thermal protection system and thermal protection materials[J]. Aerospace Materials and Technology, 2018, 48(4): 9-15. | |
[6] | 孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016, 35(8): 569-576. |
KONG Yong, SHEN Xioadong, CUI Sheng. Aerogel Nanomaterials[J]. Materials China, 2016, 35(8): 569-576. | |
[7] | 杨冬晖, 李猛, 尚坤. 航天服隔热材料技术研究进展[J]. 航空材料学报, 2016, 36(2): 87-96. |
YANG Donghui, LI Meng, SHANG Kun. Research progress of spacesuit thermal insulation material technology[J]. Journal of Aeronautical Materials, 2016, 36(2): 87-96. | |
[8] | 冯晶晶, 赵晓明, 郑振荣. SiO2气凝胶在热防护纺织品中的应用[J]. 纺织科学与工程学报, 2018, 35(2): 113-117. |
FENG Jingjing, ZHAO Xiaoming, ZHENG Zhenrong. Application of SiO2 aerogel in thermal protection textiles[J]. Journal of Textile Science & Engineering, 2018, 35(2): 113-117. | |
[9] | 杨海龙, 吴文军, 徐云辉, 等. 气凝胶: 高超声速飞行器未来的“防火服”[J]. 科技传播, 2016, 8(19): 196-198. |
YANG Hailong, WU Wenjun, XU Yunhui, et al. Aerogel-the future "fire protection suit" of hypersonic aircraft[J]. Public Communication of Science & Technology, 2016, 8(19): 196-198. | |
[10] |
PAN Y, HE S, CHENG X, et al. A fast synthesis of silica aerogel powders-based on water glass via ambient drying[J]. Journal of Sol-Gel Science and Technology, 2017, 82(2): 594-601.
doi: 10.1007/s10971-017-4312-4 |
[11] | WU H J, FAN J T, DU N. Porous Materials with thin interlayers for optimal thermal insulation[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3): 291-300. |
[12] | 王慧利, 邓建国, 舒远杰. 多孔隔热材料的研究现状与进展[J]. 化工新型材料, 2011, 39(12): 18-21. |
WANG Huili, DENG Jianguo, SHU Yuanjie. Research status and progress of porous thermal insulation materials[J]. New Chemical Materials, 2011, 39(12): 18-21. | |
[13] | 孙振云, 钱晓明, 刘永胜, 等. 灭火消防服热防护性能的研究进展[J]. 棉纺织技术, 2020, 48(1): 76-80. |
SUN Zhenyun, QIAN Xiaoming, LIU Yongsheng, et al. Research progress on the thermal protection performance of fire-fighting clothing[J]. Cotton Textile Technology, 2020, 48(1): 76-80. | |
[14] | 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 6-22. |
XIE Weihua, HAN Guokai, MENG Songhe, et al. Development status and trend of thermal protection structure of return cabin/space detector[J]. Acta Aeronautica ET Astronautica Sinica, 2019, 40(8): 6-22. | |
[15] | 邹军锋, 李文静, 刘斌, 等. 飞行器用热防护材料发展趋势[J]. 宇航材料工艺, 2015, 45(4): 10-15. |
ZOU Junfeng, LI Wenjing, IU Bin, et al. Development trend of thermal protection materials for aircraft[J]. Aerospace Materials and Technology, 2015, 45(4): 10-15. | |
[16] | 张璇, 董薇, 马宁, 等. 轻质碳-酚醛防热材料缺陷类型及影响分析[J]. 航天器环境工程, 2018, 35(6): 599-605. |
ZHANG Xuan, DONG Wei, MA Ning, et al. Defect types and impact analysis of lightweight carbon-phenolic heat insulation materials[J]. Spacecraft Environment Engineering, 2018, 35(6): 599-605. | |
[17] | 李健, 张凡, 张丽娟, 等. 一种耐高温多层热防护组件结构设计与性能研究[J]. 北京理工大学学报, 2019, 39(10): 1051-1056. |
LI Jian, ZHANG Fan, ZHANG Lijuan, et al. Research on the structure design and performance of a high-temperature multi-layer thermal protection com-ponent[J]. Transaction of Beijing Institute of Technology, 2019, 39(10): 1051-1056. | |
[18] | 夏雨, 汪东, 许孔力, 等. 新型树脂基热防护结构的制备及性能研究[J]. 复合材料科学与工程, 2020(10): 96-100. |
XIA Yu, WANG Dong, XU Kongli, et al. Study on the preparation and performance of a new type of resin-based thermal protection structure[J]. Composites Science and Engineering, 2020(10): 96-100. | |
[19] | 吕双祺, 李想, 左渝钰, 等. 气凝胶隔热复合材料在空天飞行器热防护技术中的应用[J]. 飞航导弹, 2020(5): 19-25. |
LÜ Shuangqi, LI Xiang, ZUO Yuyu, et al. Application of aerogel thermal insulation composite material in thermal protection technology of aerospace vehicle[J]. Aerodynamic Missile Journal, 2020(5): 19-25. | |
[20] | 高珊, 卢业虎, 王来力, 等. 气凝胶在防护服中的应用进展[J]. 丝绸, 2019, 56(4): 44-49. |
GAO Shan, LU Yehu, WANG Laili, et al. Application progress of aerogel in protective clothing[J]. Journal of Silk, 2019, 56(4): 44-49. | |
[21] | 赵石楠. 气凝胶型隔热层消防服概念研究[J]. 广东化工, 2018, 45(1): 137-138. |
ZHAO Shinan. Research on the concept of aerogel thermal insulation layer fire fighting suit[J]. Guangdong Chemical Industry, 2018, 45(1): 137-138. | |
[22] | 牛丽, 钱晓明, 张文欢. 消防服装防护性能研究进展[J]. 纺织科技进展, 2016(11): 5-8. |
NIU Li, QIAN Xiaoming, ZHANG Wenhuan. Research progress on protective performance of fire protection clothing[J]. Progress in Textile Science & Technology, 2016(11): 5-8. | |
[23] | 杨帆, 鲁义, 施式亮, 等. 气凝胶消防服隔热层研制的可行性分析[J]. 安全, 2020, 41(1): 68-70. |
YANG Fan, LU Yi, SHI Shiliang, et al. Feasibility analysis on the development of thermal insulation layer of aerogel fire-fighting clothing[J]. Safety & Security, 2020, 41(1): 68-70. | |
[24] | 赵晓明, 刘国熠. 消防避火服用复合织物热防护效能优化研究[J]. 材料导报, 2017, 31(1): 77-83. |
ZHAO Xiaoming, LIU Guoye. Study on optimization of thermal protection efficiency of composite fabrics for fire-fighting and avoiding fire[J]. Materials Reports, 2017, 31(1): 77-83. | |
[25] | 任洪雨, 刘沙, 陈维旺, 等. 双面格栅气凝胶隔热毡的研制及热防护性能[J]. 消防科学与技术, 2020, 39(9): 1274-1277. |
REN Hongyu, LIU Sha, CHEN Weiwang, et al. Development and thermal protection performance of double-sided grid aerogel insulation felt[J]. Fire Science and Technology, 2020, 39(9): 1274-1277. | |
[26] | 王璐, 丁笑君, 夏馨, 等. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel/aramid nonwoven fabric composite fabric[J]. Journal of Textile Research, 2019, 40(10): 79-84. | |
[27] |
SHAID A, WANG L, PADHYE R, et al. Aerogel nonwoven as reinforcement and batting material for firefighter's protective clothing: a comparative study[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1): 95-104.
doi: 10.1007/s10971-018-4689-8 |
[28] | 张慧. 基于气凝胶的高性能热防护纺织新材料的研究[D]. 天津: 天津工业大学, 2017: 38-71. |
ZHANG Hui. Research on aerogel-based new high-performance thermal protection textile materials[D]. Tianjin: Tiangong University, 2017: 38-71. | |
[29] | 郑红霞. SiO2纳米纤维/纳米颗粒复合材料的制备及其隔热性能研究[D]. 上海: 东华大学, 2016: 32-50. |
ZHENG Hongxia. Study on Preparation and thermal insulation performance of SiO2 nanofiber/nanoparticle composite[D]. Shanghai: Donghua University, 2016: 32-50. | |
[30] |
YIN H, GAO S, CAI Z, et al. Experimental and numerical study on thermal protection by silica aerogel based phase change composite[J]. Energy Reports, 2020, 6: 1788-1797.
doi: 10.1016/j.egyr.2020.06.026 |
[31] | 何翔, 朱锡, 李永清, 等. 复合抗弹结构设计及隔热性能验证[J]. 舰船科学技术, 2017, 39(9): 42-46. |
HE Xiang, ZHU Xi, LI Yongqing, et al. Composite anti-ballistic structure design and thermal insulation performance verification[J]. Ship Science and Technology, 2017, 39(9): 42-46. | |
[32] |
CHAKRABORTY S, PISAL A A, KOTHARI V K, et al. Synthesis and characterization of fibre reinforced silica aerogel blankets for thermal protection[J]. Advances in Materials Science and Engineering, 2016. DOI: 10.1155/2016/2495623.
doi: 10.1155/2016/2495623 |
[33] | SHUANGQI L, XIAOGUANG Y, DUOQI S, et al. Effect of high temperature on compression property and deformation recovery of ceramic fiber reinforced silica aerogel composites[J]. Science China(Technological Sciences), 2017, 60(11): 1681-1691. |
[34] | 吕双祺, 马寅魏, 杨晓光, 等. 基于数字图像相关方法的气凝胶复合材料各向异性热变形测量[J]. 复合材料学报, 2017, 34(9): 2020-2029. |
LÜ Shuangqi, MA Yinwei, YANG Xiaoguang, et al. Measurement of anisotropic thermal deformation of aerogel composite material based on digital image correlation method[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 2020-2029. | |
[35] |
GHICA M E, ALMEIDA C M R, FONSECA M, et al. Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems[J]. Polymers, 2020. DOI: 10.3390/polym12061278.
doi: 10.3390/polym12061278 |
[36] |
SHIN H K, RHEE K, PARK S. Effects of exfoliated graphite on the thermal properties of erythritol-based composites used as phase-change materials[J]. Composites Part B, 2016, 96: 350-353.
doi: 10.1016/j.compositesb.2016.04.033 |
[37] |
LI G, HONG G, DONG D, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201801754.
doi: 10.1002/adma.201801754 |
[38] |
FENG D, FENG Y, ZANG Y, et al. Phase change in modified metal organic frameworks MIL-101(Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132.
doi: 10.1016/j.micromeso.2019.01.043 |
[39] |
CHEN D, QIN S, TSUI G C, et al. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage[J]. Composites Part B, 2018, 157: 239-247.
doi: 10.1016/j.compositesb.2018.08.066 |
[40] |
YUAN K, SHI J, AFTAB W, et al. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201904228.
doi: 10.1002/adfm.201904228 |
[41] |
SHI Y, WANG C, YIN Y, et al. Functional soft composites as thermal protecting substrates for wearable electronics[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905470.
doi: 10.1002/adfm.201905470 |
[42] |
WANG J, YANG M, LU Y, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials[J]. Nano Energy, 2016, 19: 78-87.
doi: 10.1016/j.nanoen.2015.11.001 |
[43] |
M S E, M G, et al. Nanoencapsulation of phase change materials for advanced thermal energy storage systems.[J]. Chemical Society reviews, 2018, 47(11): 4156-4175.
doi: 10.1039/C8CS00099A |
[44] |
FENG D, FENG Y, QIU L, et al. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605.
doi: 10.1016/j.rser.2019.04.041 |
[45] |
CHEN X, GAO H, XING L, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials[J]. Energy Storage Materials, 2019, 18: 280-288.
doi: 10.1016/j.ensm.2018.08.024 |
[46] |
WANG F, GAO S, PAN J, et al. Short-chain modified SiO2 with high absorption of organic PCM for thermal protection[J]. Nanomaterials, 2019. DOI: 10.3390/nano9040657.
doi: 10.3390/nano9040657 |
[47] |
LIU P, GAO H, CHEN X, et al. In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection[J]. Composites Part B, 2020. DOI: 10.1016/j.compositesb.2020.108072.
doi: 10.1016/j.compositesb.2020.108072 |
[48] |
PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284.
doi: 10.1126/science.1068609 |
[49] |
KIM T, PARK C, LEE J, et al. Supersonically sprayed clay, silica, and silica aerogel hybrid films as thermal and electrical barriers[J]. Ceramics International, 2018, 44(11): 12934-12939.
doi: 10.1016/j.ceramint.2018.04.106 |
[50] | VALLON S, HOFRICHTER A, DRÉVILLON B, et al. Improvement of the adhesion of silica layers to polypropylene induced by nitrogen plasma treatment[J]. Thin Solid Films, 1996, 290: 68-73. |
[51] | 谭大力, 宗培. SiC陶瓷和SiO2气凝胶组合结构耐热隔热性能研究[J]. 船舶工程, 2014, 36(3): 103-106. |
TAN Dali, ZONG Pei. Study on the heat and heat insulation performance of the composite structure of SiC ceramic and SiO2 aerogel[J]. Ship Engineering, 2014, 36(3): 103-106. | |
[52] | 李春来. 低密度纤维增强酚醛气凝胶的制备及结构性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 12-22. |
LI Chunlai. Study on preparation and structural properties of low density fiber reinforced phenolic aerogel[D]. Harbin: Harbin Institute of Technology, 2020: 12-22. | |
[53] | 罗浩. 有机无机杂化改性酚醛疏水及耐热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 54-63. |
LUO Hao. Study on hydrophobicity and heat resistance of organic-inorganic hybrid modified phenolic[D]. Harbin: Harbin Institute of Technology, 2015: 54-63. | |
[54] |
WANG C, CHENG H, HONG C, et al. Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: facile preparation, properties and application to thermal protection[J]. Composites Part A, 2018, 112: 81-90.
doi: 10.1016/j.compositesa.2018.05.026 |
[55] | 宋寒, 徐春晓, 王湘宁, 等. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(S2): 1525-1527. |
SONG Han, XU Chunxiao, WANG Xiangning, et al. Study on the effect of different resin precursor ratios on the properties of inorganic phenolic aerogel thermal insulation composites[J]. Materials Reports, 2020, 34(S2): 1525-1527. | |
[56] | 杨鸷. 碳气凝胶及其复合材料的制备与应用[D]. 合肥: 中国科学技术大学, 2020: 15-16. |
YANG Zhi. Preparation and application of carbon aerogel and its composite materials[D]. Hefei: University of Science and Technology of China, 2020: 15-16. | |
[57] |
WU D, FU R. Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels[J]. Journal of Porous Materials, 2008, 15(1): 29-34.
doi: 10.1007/s10934-006-9048-4 |
[58] |
LEE J, KIM J, HYEON T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
doi: 10.1002/adma.200501576 |
[59] | 王烽屹. 耐烧蚀酚醛树脂基复合材料的制备及其性能研究[D]. 武汉: 武汉理工大学, 2017: 10-15. |
WANG Fengyi. Research on preparation and performance of ablative resistant phenolic resin matrix composite[D]. Wuhan: Wuhan University of Technology, 2017: 10-15. | |
[60] |
YE C, AN Z, ZHANG R. Super-elastic carbon-bonded carbon fibre composites impregnated with carbon aerogel for high-temperature thermal insulation[J]. Advances in Applied Ceramics, 2019, 118(5): 292-299.
doi: 10.1080/17436753.2019.1572341 |
[61] | 冯家鑫. Cf/炭气凝胶复合材料及其ZrB2-SiC涂层的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 35-59. |
FENG Jiaxin. Preparation and properties of Cf/carbon aerogel composite and its ZrB2-SiC coating[D]. Harbin: Harbin Institute of Technology, 2020: 35-59. | |
[62] | 蒋莹莹. 基于晶体生长和气凝胶技术制备芳砜纶热防护纺织品[D]. 上海: 东华大学, 2017: 75-76. |
JIANG Yingying. Preparation of aramid thermal protective textiles based on crystal growth and aerogel technology[D]. Shanghai: Donghua University, 2017: 75-76. | |
[63] | 陈恒. Al2O3和Al2O3-SiO2气凝胶及其复合材料的制备和性能研究[D]. 济南: 济南大学, 2016: 52-69. |
CHEN Heng. Preparation and properties of Al2O3 and Al2O3-SiO2 aerogels and their composite materials[D]. Jinan: Jinan Universty, 2016: 52-69. | |
[64] |
SHAO G, LU Y, WU X, et al. Preparation and thermal shock resistance of high emissivity molybdenum disilicide-aluminoborosilicate glass hybrid coating on fiber reinforced aerogel composite[J]. Applied Surface Science, 2017, 416: 805-814.
doi: 10.1016/j.apsusc.2017.04.184 |
[65] | 高珊, 卢业虎, 张德锁, 等. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(4): 117-122. |
GAO Shan, LU Yehu, ZHANG Desuo, et al. Thermal protection performance of graphene aerogel composite fireproof fabric[J]. Journal of Textile Research, 2020, 41(4): 117-122. | |
[66] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
MENG Jing, GAO Shan, LU Yehu. Influencing factors of the protective performance of graphene aerogel composite fireproof fabric[J]. Journal of Textile Research, 2020, 41(11): 116-121. |
[1] | 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8. |
[2] | 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28. |
[3] | 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73. |
[4] | 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202. |
[5] | 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193. |
[6] | 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39. |
[7] | 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102. |
[8] | 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60. |
[9] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
[10] | 林田田, 杨丹, 高伟洪, 张之悦, 赵小燕. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(02): 149-155. |
[11] | 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171. |
[12] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8. |
[13] | 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27. |
[14] | 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35. |
[15] | 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20. |
|