纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 22-28.doi: 10.13475/j.fzxb.20220103207

• 高性能纺织结构柔性材料制备及应用 • 上一篇    下一篇

聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能

黄耀丽1, 陆诚1, 蒋金华1,2, 陈南梁1,2, 邵慧奇3()   

  1. 1.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    2.东华大学 纺织学院, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2022-01-14 修回日期:2022-03-16 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 邵慧奇
  • 作者简介:黄耀丽(1994—),女,博士生。主要研究方向为纤维/纳米粒子增强柔性薄膜及其应用。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303300);上海市自然科学基金项目(20ZR1401600);上海市自然科学基金项目(20ZR1400600);中央高校基本科研业务费专项资金项目(2232020D-09);中央高校基本科研业务费专项资金项目(2232020G-06)

Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film

HUANG Yaoli1, LU Cheng1, JIANG Jinhua1,2, CHEN Nanliang1,2, SHAO Huiqi3()   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-01-14 Revised:2022-03-16 Published:2022-06-15 Online:2022-07-15
  • Contact: SHAO Huiqi

摘要:

针对纤维增强柔性膜在服役过程中的热形变规律和可能出现的热力学问题,以聚酰亚胺(PI)纤维为增强体、聚二甲基硅氧烷(PDMS)为基体通过刮刀涂层的方法制备PI纤维增强PDMS柔性复合膜。利用热重分析仪研究了复合膜的热稳定性能,采用万能材料试验仪和热机械分析仪讨论了取向增强纤维线密度和铺层密度对复合膜力学性能和热膨胀系数的影响;采用COMSOL软件模拟分析了纤维取向增强复合膜的热膨胀变形机制。结果表明,复合膜在300 ℃时质量损失率仅为1.22%,表明其在低于300 ℃的环境中较稳定;随纤维铺层密度和线密度的增大,断裂强度和弹性模量逐渐增大;热膨胀系数逐渐降低,且均呈现负膨胀特点,这说明聚酰亚胺纤维取向增强可有效调节复合膜的尺寸稳定性。模拟与实验结果具有较好一致性,模型可用于预测优化PI纤维增强复合膜的热膨胀系数。

关键词: 聚酰亚胺纤维, 热稳定性能, 热膨胀系数, 力学性能, 有限元模拟, 复合材料, 聚二甲基硅氧烷

Abstract:

Aiming at the thermal deformation and thermodynamic problems of fiber-reinforced flexible film in service, polyimide (PI) fiber-reinforced polydimethylsiloxane (PDMS) flexible composite film was prepared with polyimide fiber as reinforcement and polydimethylsiloxane as matrix by scraper coating. The thermal stability of the composite membrane was studied using a thermogravimetric analyzer. The universal material tester and the thermomechanical analyzer were used to discuss the influence of the linear density and laying density of the oriented reinforced fiber on the mechanical properties and thermal expansion coefficient of the composite film. COMSOL finite element simulation was used to analyze the thermal expansion and deformation mechanism of fiber-oriented reinforced composite membrane. The results show that the rate of mass loss is only 1.22% at 300 ℃, indicating that the thermal stability of composite membrane below 300 ℃. With the increase of fiber layer density and linear density, the breaking strength and elastic modulus gradually increase and the thermal expansion coefficient gradually decreases, and both exhibit negative expansion characteristics, indicating that the orientation enhancement of polyimide fibers can effectively influence the dimensional stability of composite membrane materials. The correlation between the simulation and the experimental results is good, indicating that the model can be used to predict and optimize the thermal expansion coefficient of PI fiber-reinforced composite membranes.

Key words: polyimide fiber, thermal stability, thermal expansion coefficiency, mechanical property, finite element simulation, composite material, polydimethylsiloxane

中图分类号: 

  • TQ343

表1

材料参数"

材料 热膨胀系数/
(μm·(m·℃)-1)
恒压热容/
(J·(kg·K)-1)
导热系数/
(W·(m·K)-1)
密度/
(kg·m-3)
弹性模量/
MPa
泊松比
PI纤维 -2.00 1 100 0.15 1 440 20 000 0.30
PDMS 187 1 460 0.16 970 0.75 0.49

图1

PI纤维、PDMS及其复合膜的热稳定性能"

图2

PI纤维和PDMS膜及不同铺层密度的PI纤维增强膜的应力-应变曲线"

表2

PDMS膜及其不同铺层密度的纤维增强膜力学性能"

铺层密度/
(根·(10 cm)-1)
断裂强度/
MPa
弹性模量/
MPa
PDMS膜 2.0±0.05 0.5±0.02
30 13.73±0.26 236±5.21
50 23.07±2.70 365±1.41
70 28.24±1.89 537±6.46
90 41.02±3.14 628±3.20

图3

不同线密度的PI纤维增强膜的应力-应变曲线"

表3

不同线密度的PI纤维增强膜力学性能"

线密度/tex 断裂强度/MPa 弹性模量/MPa
6 15.92±2.50 293±1.61
11 18.81±1.44 365±1.41
22 21.25±0.37 470±6.37

表4

增强膜的热膨胀系数"

PI纤维 PDMS 不同铺展密度的纤维增强膜
30 50 70 90
-3.44±0.07 187.71±3.93 -1.66±0.25 -2.18±0.02 -5.24±0.03 -7.54±0.04

图4

140 ℃时的变形云图"

图5

边界位移变化分布 注:弧长为纤维垂直方向边界长度。"

[1] 王洁斌, 何莹莹, 黄奎. 新型PE骨架膜结构在原料料场封闭工程中的应用[J]. 中国科技纵横, 2021(7):13-14.
WANG Jiebin, HE Yingying, HUANG Kui. Application of new PE framework membrane structure in the raw material stockyard enclosure project[J]. China Science & Technology Overview, 2021(7): 13-14.
[2] 院老虎, 康雪, 连冬杉, 等. 空间薄膜结构充气展开研究[J]. 南京航空航天大学学报, 2021, 53(1):27-34.
YUAN Laohu, KANG Xue, LIAN Dongshan, et al. Study on inflatable expansion of space thin film structure[J]. Journal of Nanjing University of Aero-nautics & Astronautics, 2021, 53(1):27-34.
[3] 杨涛, 丁辛, 杨旭东, 等. 建筑用膜结构材料的发展现状和趋势[J]. 纺织导报, 2019(z1):95-97.
YANG Tao, DING Xin, YANG Xudong, et al. Application status and trend of membrane materials in architecture fields[J]. China Textile Leader, 2019(z1): 95-97.
[4] 汪泽幸, 吴波, 朱文佳, 等. 应力回复对PVC膜材应力松弛行为的影响[J]. 东华大学学报(自然科学版), 2020, 46(5):712-718.
WANG Zexing, WU Bo, ZHU Wenjia, et al. Effect of stress reversal on the stress relaxation behavior of PVC membrane[J]. Journal of Donghua Uuiversity (Natural Science), 2020, 46(5):712-718.
[5] 高春梅, 孟彦宾, 奚旦立. PVDF/PVC膜化学稳定性研究[J]. 纺织学报, 2008, 29(1):17-21.
GAO Chunmei, MENG Yanbin, XI Danli. Study on the chemical stability of PVDF/PVC membrane[J]. Journal of Textile Research, 2008, 29(1):17-21.
[6] 邵青青, 杜赵群, 郑冬明, 等. PTFE膜复合织物的防水透湿性能研究[J]. 产业用纺织品, 2020, 38(3):36-40.
SHAO Qingqing, DU Zhaoqun, ZHENG Dongming, et al. Study on waterproof and moisture permeability of PTFE film composite fabrics[J]. Technical Textiles, 2020, 38(3):36-40.
[7] 徐长亚, 叶雪康, 陈连星, 等. 现代建筑用PVC膜结构复合材料工艺研究[J]. 产业用纺织品, 2008(6):37-39.
XU Changya, YE Xuekang, CHEN Lianxing, et al. The discussion about modern structural use PVC membrane structure compound material craft[J]. Technical Textiles, 2008(6):37-39.
[8] PENG Chaoyi, XING Suli, YUAN Zhiqing, et al. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J]. Applied Surface Science, 2012, 259:764-768.
doi: 10.1016/j.apsusc.2012.07.118
[9] 童婷, 张营堂, 马飞. PVDF基复合材料的制备及热学性质研究[J]. 陕西理工学院学报(自然科学版), 2014, 30(6):1-6.
TONG Ting, ZHANG Yingtang, MA Fei. Study on preparation and thermal properties of PVDF compo-sites[J]. Journal of Shaanxi University of Technology(Nature Science Edition), 2014, 30(6): 1-6.
[10] 朱聪聪, 陈南梁. PTFE-玻璃纤维建筑膜材料的发展和生产工艺[J]. 新型建筑材料, 2013, 44(1):34-36.
ZHU Congcong, CHEN Nanliang. Development and production process of PTFE-fiber glass fabric architectural membranes[J]. New Building Materials, 2013, 44(1):34-36.
[11] ZHAO Yunhong, ZHANG Yafei, BAI Shulin, et al. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties[J]. Composites Part B Engineering, 2016, 94(6):102-108.
doi: 10.1016/j.compositesb.2016.03.056
[12] SHI Yingli, HU Min, XING Yufeng, et al. Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites[J]. Materials & Design, 2019, 185:1-7.
[13] FANG Chengfeng, BIAN Zuguang, PAN Peng, et al. Experimental and theoretical study on thermal properties of porous PDMS[J]. Mechanics of Advanced Materials and Structures, 2021, 28(1/12):784-790.
doi: 10.1080/15376494.2019.1597228
[14] 林芳兵, 蒋金华, 陈南梁, 等. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(5): 14-19.
LIN Fangbing, JIANG Jinhua, CHEN Nanliang, et al. High-performance polyimide fiber and its weava-bility[J]. Journal of Textile Research, 2018, 39(5): 14-19.
[15] 杜晓冬, 林芳兵, 蒋金华, 等. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(9):22-27.
DU Xiaodong, LIN Fangbing, JIANG Jinhua, et al. Influence of oxygen plasma modification on surface properties of polyimide fiber[J]. Journal of Textile Research, 2019, 40(9):22-27.
[16] 白琼琼. 高性能纤维的发展现状及展望[J]. 毛纺科技, 2021, 49(6):91-94.
Bai Qiongqiong. Review on the development of high performance fiber[J]. Wool Textile Journal, 2021, 49(6): 91-94.
[17] 王晓东, 朱辅华, 黄培. 聚酰亚胺-聚四氟乙烯复合材料的制备和表征[J]. 南京工业大学学报(自然科学版), 2011, 33(4):16-19.
WANG Xiaodong, ZHU Fuhua, HUANG Pei. Preparation and characterization of PI-PTFE compsite materials[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(4):16-19.
[18] 董晗, 郑森森, 郭涛, 等. 高耐热聚酰亚胺纤维的制备及其性能[J]. 纺织学报, 2022, 43(2):19-23.
DONG Han, ZHENG Sensen, GUO Tao, et al. Preparation and properties of high heat-resistant polyimide fiber[J]. Journal of Textile Research, 2022, 43 (2):19-23.
doi: 10.1177/004051757304300103
[1] 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8.
[2] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[3] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[4] 刘雪艳, 蒋高明. 基于ABAQUS的运动压力袜编织尺寸预测[J]. 纺织学报, 2022, 43(06): 79-85.
[5] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[6] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[7] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[8] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[9] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[10] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
[11] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[12] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[13] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[14] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[15] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!