纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 29-36.doi: 10.13475/j.fzxb.20210300808
QU Yun, MA Wei, LIU Ying, REN Xuehong()
摘要:
为开发一种具有高效抗菌性能和光降解功能的复合纤维膜,将Ag与ZnO复合,采用静电纺丝技术将不同质量分数的Ag-ZnO颗粒添加到聚己内酯(PCL)和聚羟基丁酸酯(PHB)复合材料中共混,制备了Ag-ZnO-PHB/PCL复合纤维膜。借助扫描电子显微镜、X射线衍射仪、热重分析和红外光谱等技术对复合纤维膜进行了表征,并评价其力学性能、光降解性能、抗菌性能及生物被膜作用。结果显示:该复合纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌率在60 min时分别达到84.12%和97.99%,并在一定程度上对生物被膜起抑制作用;复合纤维膜在紫外光下照射12 min对亚甲基蓝溶液有显著的降解效果;复合纤维膜具有较好的力学性能与优良的生物相容性,有望应用于抗菌包装材料及生物医用领域。
中图分类号:
[1] | 赵欣, 朱健健, 李梦, 等. 我国抗菌剂的应用与发展现状[J]. 材料导报, 2016, 30(7): 68-73. |
ZHAO Xin, ZHU Jianjian, LI Meng, et al. Domestic application and development status of anti-bacterial agent[J]. Materials Review, 2016, 30(7): 68-73. | |
[2] | 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4): 1-6. |
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nanocomposite fibers[J]. Journal of Textile Research, 2019, 40(4): 1-6.
doi: 10.1177/004051757004000101 |
|
[3] |
ASIT B S, TAPAN K. Polyhydroxyalkanoates based copolymers[J]. International Journal of Biological Macromolecules, 2019. DOI: 10.1016/j.ijbiomac.2019.08.147.
doi: 10.1016/j.ijbiomac.2019.08.147 |
[4] | FAN Xiaoyan, REN Xuehong, HUANG Tungshi, et al. Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer[J]. Royal Society of Chemistry Advances, 2016, 42(6): 600-610. |
[5] | 张连来, 邓先模. PHB与PCL、PECL可生物降解高分子共混体系的研究[J]. 高分子材料科学与工程, 1994(1):64-68. |
ZHANG Lianlai, DENG Xianmo. Biodegradable polymer blends containing of PHB and PCL, PECL[J]. Polymeric Materials Science and Engineering, 1994(1): 64-68. | |
[6] |
LIN Xinghuan, YIN Maoli, LIU Ying, et al. Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application[J]. Journal of Industrial and Engineering Chemistry, 2018. DOI: 10.1016/j.jiec.2018.02.031.
doi: 10.1016/j.jiec.2018.02.031 |
[7] |
MICAELA D E, FEDERICA C, FEDERICA B, et al. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxy-apatite[J]. Materials Science and Engineering: C, 2019. DOI: 10.1016/j.msec.2019.03.014.
doi: 10.1016/j.msec.2019.03.014 |
[8] |
MAHBOD A, MINA N, MAHYAR P S, et al. The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art[J]. European Polymer Journal, 2020. DOI: 10.1016/j.eurpolymj.2020.109701.
doi: 10.1016/j.eurpolymj.2020.109701 |
[9] |
ANUKORN P, SINEENAT S, PAWEENA W, et al. Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 170-177.
doi: 10.1016/j.jpcs.2018.11.007 |
[10] | 张艳艳, 詹璐瑶, 王培, 等. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
ZHANG Yanyan, ZHAN Luyao, WANG Pei, et al. Research progress in preoaration of durable antibacterial cotton fabrics with inorganic nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 174-180.
doi: 10.1177/004051757104100215 |
|
[11] |
CUI Junwei, WU Dapeng, LI Zhenyun, et al. Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activi-ties[J]. Ceramics International, 2021, 47(11): 15759-15770.
doi: 10.1016/j.ceramint.2021.02.148 |
[12] |
JEEVAN J, SOMNATH B. Hybrid ZnO: Ag core-shell nanoparticles for wastewater treatment: growth mechanism and plasmonically enhanced photocatalytic activity[J]. Applied Surface Science, 2018. DOI: 10.1016/j.apsusc.2018.06.028.
doi: 10.1016/j.apsusc.2018.06.028 |
[13] |
LIU Hairui, LIU Hui, YANG Jie, et al. Microwave-assisted one-pot synthesis of Ag decorated flower-like ZnO composites photocatalysts for dye degradation and NO removal[J]. Ceramics International, 2019, 45(16): 20133-20140.
doi: 10.1016/j.ceramint.2019.06.279 |
[14] |
VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B Environmental, 2018. DOI: 10.1016/j.apcatb.2017.11.075.
doi: 10.1016/j.apcatb.2017.11.075 |
[15] |
PANCHAL P, PAUL D R, SHARMA A, et al. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water[J]. Journal of Colloid and Interface Science, 2019. DOI: 10.1016/j.jcis.2019.12.079.
doi: 10.1016/j.jcis.2019.12.079 |
[16] |
HU Min, LI Chenwen, LI Xin, et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity[J]. Artificial cells, Nanomedicine and Biotechnology, 2018. DOI: 10.1080/21691401.2017.1366339.
doi: 10.1080/21691401.2017.1366339 |
[17] |
LI Wandi, GAO Jing, WANG Lu. Enhancement of durable photocatalytic properties of cotton/polyester fabrics using TiO2/SiO2 via one step sonosynthesis[J]. Journal of Industrial Textiles, 2017, 46(8): 1633-1655.
doi: 10.1177/1528083716629138 |
[18] |
BHATTARAI R, BACHU R, BODDU S, et al. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery[J]. Pharmaceutics, 2019. DOI: 10.3390/pharmaceutics11010005.
doi: 10.3390/pharmaceutics11010005 |
[19] | 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4): 2172-2175. |
WU Zhifu, LI Sujuan. Infrared spectrum characteristics of zinc hydroxide and zinc oxide[J]. Spectroscopy Laboratory, 2012, 29(4): 2172-2175. | |
[20] |
ISHITA M, ABHAY S, POORNIMA D, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli[J]. Colloids and Surfaces B: Biointerfaces, 2014, 115: 359-367.
doi: 10.1016/j.colsurfb.2013.12.005 |
[21] | 田格, 吴琼, 孙素琴, 等. 二维傅里叶变换红外(2D FTIR)相关光谱技术研究聚羟基丁酸酯(PHB)的熔融与结晶[J]. 高等学校化学学报, 2002, 16(8): 1627-1631. |
TIAN Ge, WU Qiong, SUN Suqin, et al. Studies on Pre-melting and crystallization process of biosynthesized poly (3-hydroxybutyrate) using two-dimensional fourier-transform infrared spectroscopy[J]. Chemical Journal of Chinese University, 2002, 16(8): 1627-1631. | |
[22] |
KADAM A N, BHOPATE D P, KONDALKAR V V, et al. Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry, 2018. DOI: 10.1016/j.jiec.2017.12.003.
doi: 10.1016/j.jiec.2017.12.003 |
[23] | 杨军, 黄陵陵, 姚宝晶. 聚己内酯热分解机制及其热分解产物[J]. 科技导报, 2011, 29(7): 58-61. |
YANG Jun, HUANG Lingling, YAO Baojing, et al. Thermal degradation mechanism and pyrolysis of the polycaprolactone[J]. Science and Technology Review, 2011, 29(7): 58-61. | |
[24] |
FAN Xiaoyan, YIN Maoli, JIANG Zhiming, et al. Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts[J]. Polymers for Advanced Technologies, 2016, 27(12): 1617-1624.
doi: 10.1002/pat.3839 |
[25] |
LIN Xinghuan, LI Shanshan, JUNG Joonhoo, et al. PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications[J]. RSC Advances, 2019, 9(40): 23071-23080.
doi: 10.1039/c9ra04465e |
[26] | MA Wei, LI Lin, LIN Xinghuan, et al. Novel ZnO/N-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31411-31420. |
[27] |
ISHITA M, ABHAY S, POORNIMA D, et al. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S.aureus and GFP-expressing antibiotic resistant E. coli[J]. Colloids and Surfaces B:Biointerfaces, 2014. DOI: 10.1016/j.colsurfb.2013.12.005.
doi: 10.1016/j.colsurfb.2013.12.005 |
[28] | LIU Yang, HE Lili, MUSTAPHA A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7[J]. Journal of Applied Microbiology, 2009, 107(4): 158-164. |
[29] | 况慧娟, 杨林, 许恒毅, 等. 纳米氧化锌抗菌性能及机制的研究进展[J]. 中国药理学与毒理学杂志, 2015, 29(1): 153-157. |
KUANG Huijuan, YANG Lin, XU Hengyi, et al. Antibacterial properties and mechanism of zinc oxide nanoparticles: research progress[J]. Chinese Journal of Pharmacology and Toxicology, 2015, 29(1): 153-157. |
[1] | 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28. |
[2] | 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56. |
[3] | 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93. |
[4] | 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184. |
[5] | 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62. |
[6] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[7] | 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76. |
[8] | 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85. |
[9] | 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46. |
[10] | 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73. |
[11] | 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209. |
[12] | 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30. |
[13] | 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43. |
[14] | 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57. |
[15] | 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70. |
|