纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 37-43.doi: 10.13475/j.fzxb.20210504507

• 纤维材料 • 上一篇    下一篇

基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能

费建武1, 吕明泽1, 刘利伟2, 王春红1, 韩振邦1()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津市远大工贸有限公司, 天津 301600
  • 收稿日期:2021-05-19 修回日期:2021-12-28 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 韩振邦
  • 作者简介:费建武(1988—),男,博士生。主要研究方向为光催化纤维材料。
  • 基金资助:
    国家自然科学基金青年基金项目(52003192);天津市技术创新引导专项基金项目(20YDTPJC00920);天津市应用基础与前沿技术研究计划青年项目(15JCQNJC06300)

Construction of air-liquid-solid tri-phase system from bilayer micro/nanofiber membrane and its photocatalytic performance

FEI Jianwu1, LÜ Mingze1, LIU Liwei2, WANG Chunhong1, HAN Zhenbang1()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Yuanda Industry and Trade Co., Ltd., Tianjin 301600, China
  • Received:2021-05-19 Revised:2021-12-28 Published:2022-06-15 Online:2022-07-15
  • Contact: HAN Zhenbang

摘要:

为提升石墨相氮化碳(g-C3N4)的光催化降解性能,通过静电纺丝技术制备了亲疏不对称的双层纳微纤维膜,其中疏水层为聚苯乙烯纤维膜,亲水层为以聚丙烯腈/聚乙烯吡咯为载体的g-C3N4/酞菁铁(FePc)异质结催化膜,对其表面形貌、化学结构和光吸收性能进行表征,并考察了对染料废水的光催化降解作用。结果表明:水接触角分别为140°和12°的疏水层和亲水催化层可紧密结合,其中催化层中g-C3N4和FePc在纤维膜上分布均匀,且FePc的引入将纤维膜的光吸收范围拓展至800 nm;在染料的光催化降解中,疏水层可作为气体通道将空气中的O2传输至亲水催化层,从而形成气液固三相接触的反应体系,有效促进O2对g-C3N4导带光生电子的俘获,使其光催化活性较常规二相体系提升3.1倍。

关键词: 纳微纤维膜, 氮化碳, 三相体系, 光催化性能, 染料降解

Abstract:

To enhance the photocatalytic degradation performance of the graphitic carbon nitride (g-C3N4), a bilayer micro/nanofiber membrane with opposing wettability has been developed via the electrospinning method, where the polystyrene membrane was used as the hydrophobic layer, and the g-C3N4/iron (II) phthalocyanine (FePc) heterojunction was taken for the hydrophilic layer on a polyacrylonitrile/polyvinylpyrrolidone membrane substrate. The morphology, chemical construction and optical absorption of the prepared bilayer membrane were investigated, and the photocatalytic performance for dye degradation was studied. The results indicate that the hydrophobic layer and the hydrophilic catalyst layer, with the water contact angle of 140° and 12°, respectively, can be tightly combined with each other. The distribution of g-C3N4/FePc on the catalyst layer is uniform, and the sensitization of FePc extends the optical absorption up to 800 nm. During the photocatalytic dye degradation, the hydrophobic layer can serve as gas passage to quickly deliver O2 from air to the catalytic interface. This greatly boosts the capture of photoelectrons in conduction band of g-C3N4 by O2 via constructing an air-liquid-solid triphase contact interface, resulting in 3.1 times fold higher reaction kinetics versus a normal diphase system.

Key words: micro-nanofiber membrane, carbon nitride, tri-phase system, photocatalytic performance, dye degradation

中图分类号: 

  • TQ619.2

图1

CN/FePc-PP/PS的扫描电镜照片及EDAX图"

图2

纤维膜样品的红外光谱图"

图3

纤维膜样品的XPS谱图"

图4

纤维膜样品的XRD谱图"

图5

纤维膜样品的紫外-可见漫反射吸收光谱"

图6

纤维膜样品的PL谱图"

图7

不同条件下CN/FePc-PP/PS降解RhB曲线"

图8

气液固三相体系作用机制"

图9

CN/FePc-PP/PS在可见光降解RhB的循环稳定性"

[1] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[2] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
doi: 10.1038/nmat2317
[3] ZHANG N, WEN L, YAN J, et al. Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: a brief review[J]. Chemical Papers, 2019, 74(2): 389-406.
doi: 10.1007/s11696-019-00929-0
[4] LI J, ZHU Y, CHEN W, et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction[J]. Joule, 2019, 3(2): 1-13.
doi: 10.1016/j.joule.2018.12.022
[5] WU Y, FENG J, GAO H, et al. Superwettability-based interfacial chemical reactions[J]. Advanced Materials, 2019, 31(8): 1800718.
doi: 10.1002/adma.201800718
[6] LI A, CAO Q, ZHOU G, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on hydrophobic surface[J]. Angewandte Chemie-Internatioanl Edition, 2019, 58(41): 14549-14555.
[7] SHENG X, LIU Z, ZENG R, et al. Enhanced photocatalytic reaction at air-liquid-solid joint inter-faces[J]. Journal of the American Society, 2017, 139(36): 12402-12405.
doi: 10.1021/jacs.7b07187
[8] XIONG X Y, WANG Z P, ZHANG Y, et al. Wettability controlled photocatalytic reactive oxygen generation and klebsiella pneumonia inactivation over triphase systems[J]. Applied Catalysis B: Environmental, 2020, 264: 118518.
doi: 10.1016/j.apcatb.2019.118518
[9] KUMAR P S, SUNDARAMURTHY J, SUNDARRAJAN S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remedia-tion[J]. Energy & Environmental Science, 2014, 7(10): 3192-3222.
[10] NURAJE N, KHAN W, LEI Y, et al. Superhydrophobic electrospun nanofibers[J]. Journal of Materials Chemistry A, 2013, 1(6): 1929-1946.
doi: 10.1039/C2TA00189F
[11] 丁彬. 功能微纳米聚合物纤维材料[J]. 高分子学报, 2019, 50(8): 764-774.
DING Bin. Functional polymeric micro/nano-fibrous materials[J]. Acta Polymerica Sinica, 2019, 50(8): 764-774.
[12] 张梦媛, 黄庆林, 黄岩, 等. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(9): 1-7.
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its applica-tion[J]. Journal of Textile Research, 2019, 40(9): 1-7.
doi: 10.1177/004051757004000101
[13] MOHAMED A, NASSER W S, OSMAN T A, et al. Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers[J]. Journal of Colloid and Interface Science, 2017, 505: 682-691.
doi: 10.1016/j.jcis.2017.06.066
[14] 郝宁. g-C3N4基复合光催化剂的制备及性能研究[D]. 西安: 西安工业大学, 2020:1-30.
HAO Ning. Preparation and performance of g-C3N4 based composite photocatalyst[D]. Xi'an: Xi'an Technological University, 2020:1-30.
[15] SHI T, LI H, DING L, et al. Facile preparation of unsubstitured iron(II) phthalocyanine/carbon nitride nanocomposites: a multipurpose catalyst with reciprocally enhanced photo/electrocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3319-3328.
[16] HAN Z, FEI J, LI J, et al. Enhanced dye-sensitized photocatalysis for water purification by an alveoli-like bilayer Janus membrane[J]. Chemical Engineering Journal, 2021, 407: 127214.
doi: 10.1016/j.cej.2020.127214
[1] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[2] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[3] 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101.
[4] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[5] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[6] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[7] 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019, 40(12): 68-73.
[8] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[9] 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41.
[10] 吴海培 高晓红 方婧 刘其霞 何平. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!