纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 37-43.doi: 10.13475/j.fzxb.20210504507
费建武1, 吕明泽1, 刘利伟2, 王春红1, 韩振邦1()
FEI Jianwu1, LÜ Mingze1, LIU Liwei2, WANG Chunhong1, HAN Zhenbang1()
摘要:
为提升石墨相氮化碳(g-C3N4)的光催化降解性能,通过静电纺丝技术制备了亲疏不对称的双层纳微纤维膜,其中疏水层为聚苯乙烯纤维膜,亲水层为以聚丙烯腈/聚乙烯吡咯为载体的g-C3N4/酞菁铁(FePc)异质结催化膜,对其表面形貌、化学结构和光吸收性能进行表征,并考察了对染料废水的光催化降解作用。结果表明:水接触角分别为140°和12°的疏水层和亲水催化层可紧密结合,其中催化层中g-C3N4和FePc在纤维膜上分布均匀,且FePc的引入将纤维膜的光吸收范围拓展至800 nm;在染料的光催化降解中,疏水层可作为气体通道将空气中的O2传输至亲水催化层,从而形成气液固三相接触的反应体系,有效促进O2对g-C3N4导带光生电子的俘获,使其光催化活性较常规二相体系提升3.1倍。
中图分类号:
[1] | 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113. |
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113. | |
[2] |
WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
doi: 10.1038/nmat2317 |
[3] |
ZHANG N, WEN L, YAN J, et al. Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: a brief review[J]. Chemical Papers, 2019, 74(2): 389-406.
doi: 10.1007/s11696-019-00929-0 |
[4] |
LI J, ZHU Y, CHEN W, et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction[J]. Joule, 2019, 3(2): 1-13.
doi: 10.1016/j.joule.2018.12.022 |
[5] |
WU Y, FENG J, GAO H, et al. Superwettability-based interfacial chemical reactions[J]. Advanced Materials, 2019, 31(8): 1800718.
doi: 10.1002/adma.201800718 |
[6] | LI A, CAO Q, ZHOU G, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on hydrophobic surface[J]. Angewandte Chemie-Internatioanl Edition, 2019, 58(41): 14549-14555. |
[7] |
SHENG X, LIU Z, ZENG R, et al. Enhanced photocatalytic reaction at air-liquid-solid joint inter-faces[J]. Journal of the American Society, 2017, 139(36): 12402-12405.
doi: 10.1021/jacs.7b07187 |
[8] |
XIONG X Y, WANG Z P, ZHANG Y, et al. Wettability controlled photocatalytic reactive oxygen generation and klebsiella pneumonia inactivation over triphase systems[J]. Applied Catalysis B: Environmental, 2020, 264: 118518.
doi: 10.1016/j.apcatb.2019.118518 |
[9] | KUMAR P S, SUNDARAMURTHY J, SUNDARRAJAN S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remedia-tion[J]. Energy & Environmental Science, 2014, 7(10): 3192-3222. |
[10] |
NURAJE N, KHAN W, LEI Y, et al. Superhydrophobic electrospun nanofibers[J]. Journal of Materials Chemistry A, 2013, 1(6): 1929-1946.
doi: 10.1039/C2TA00189F |
[11] | 丁彬. 功能微纳米聚合物纤维材料[J]. 高分子学报, 2019, 50(8): 764-774. |
DING Bin. Functional polymeric micro/nano-fibrous materials[J]. Acta Polymerica Sinica, 2019, 50(8): 764-774. | |
[12] | 张梦媛, 黄庆林, 黄岩, 等. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(9): 1-7. |
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its applica-tion[J]. Journal of Textile Research, 2019, 40(9): 1-7.
doi: 10.1177/004051757004000101 |
|
[13] |
MOHAMED A, NASSER W S, OSMAN T A, et al. Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers[J]. Journal of Colloid and Interface Science, 2017, 505: 682-691.
doi: 10.1016/j.jcis.2017.06.066 |
[14] | 郝宁. g-C3N4基复合光催化剂的制备及性能研究[D]. 西安: 西安工业大学, 2020:1-30. |
HAO Ning. Preparation and performance of g-C3N4 based composite photocatalyst[D]. Xi'an: Xi'an Technological University, 2020:1-30. | |
[15] | SHI T, LI H, DING L, et al. Facile preparation of unsubstitured iron(II) phthalocyanine/carbon nitride nanocomposites: a multipurpose catalyst with reciprocally enhanced photo/electrocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3319-3328. |
[16] |
HAN Z, FEI J, LI J, et al. Enhanced dye-sensitized photocatalysis for water purification by an alveoli-like bilayer Janus membrane[J]. Chemical Engineering Journal, 2021, 407: 127214.
doi: 10.1016/j.cej.2020.127214 |
[1] | 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63. |
[2] | 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195. |
[3] | 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101. |
[4] | 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113. |
[5] | 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102. |
[6] | 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14. |
[7] | 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019, 40(12): 68-73. |
[8] | 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47. |
[9] | 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41. |
[10] | 吴海培 高晓红 方婧 刘其霞 何平. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12): 78-83. |
|