纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 44-48.doi: 10.13475/j.fzxb.20210310306
LI Aiyuan, SHI Xinyu, YUE Wanfu(), YOU Weiyun
摘要:
为探究丝素蛋白水凝胶材料的制备条件及其生物相容性,以二肉豆蔻酰磷脂酰甘油(DMPG)和脱胶丝素蛋白(SF)构成可控水凝胶体系,通过磷脂和SF链之间的静电和疏水作用,使SF链向β折叠结构转变获得SF水凝胶支架,分析了其细胞增殖率、细胞分化率、动物体内支架细胞肌肉生长速度和降解速度等。结果表明:DMPG浓度越高,SF水凝胶支架凝胶时间越短,添加15 mmol/L的DMPG使SF水凝胶支架的凝胶时间由原来的7 d缩短至10 min; DMPG诱导的SF水凝胶支架无细胞毒性,其中DMPG浓度为10 mmol/L时细胞增殖率最高,将该水凝胶注射入湖羊耳部皮下,其中载有湖羊肌肉卫星细胞的SF水凝胶支架在湖羊耳部生长出肌肉;SF水凝胶支架具有优异的生物相容性,随着其在动物体内时间的增加,支架逐渐降解消失,暴露出其中的肌肉组织。
中图分类号:
[1] | CIMA L G, VACANTI J P, VACANTI C, et al. Tissue engineering by cell transplantation using degradable polymer substrates[J]. Journal of Biotechnology Engineering, 1991, 113(2): 143-51. |
[2] |
LI A Y, SHI X Y, YOU W Y, et al. Muscle-derived stem cells in silk fibroin hydrogels promotes muscle regeneration and angiogenesis in sheep models: an experimental study[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(3): 787-798.
doi: 10.26355/eurrev_202202_27987 pmid: 35179745 |
[3] |
LANGER R. Tissue engineering: a new field and its challenges[J]. Pharmaceutical Research, 1997, 14(7): 840-841.
doi: 10.1023/A:1012131329148 |
[4] |
YOU R, ZHANG J, GU S, et al. Regenerated egg white/silk fibroin composite films for biomedical applications[J]. Mater Sci Eng C: Mater Biol Appl, 2017, 79: 430-435.
doi: 10.1016/j.msec.2017.05.063 |
[5] |
CIOCCI M, CACCIOTTI I, SELIKTAR D, et al. Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems[J]. Int J Biol Macromol, 2018, 108: 960-971.
doi: 10.1016/j.ijbiomac.2017.11.013 |
[6] |
NGUYEN T P, NGUYEN Q V, NGUYEN V H, et al. Silk fibroin-based biomaterials for biomedical applications: a review[J]. Polymers (Basel), 2019, 11(12): 1993.
doi: 10.3390/polym11121993 |
[7] |
EGAN G, PHUAGKHAOPONG S, MATTHEW S A L, et al. Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro res-ponse[J]. Scientific Reports, 2022, 12(1):24-51.
doi: 10.1038/s41598-021-03573-5 |
[8] |
CHOUHAN D, MANDAL B B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside[J]. Acta Biomater, 2020, 103: 24-51.
doi: 10.1016/j.actbio.2019.11.050 |
[9] |
YUAN T, LI Z, ZHANG Y, et al. Injectable ultrasonication-induced silk fibroin hydrogel for cartilage repair and regeneration[J]. Tissue Eng Part A, 2021, 27(17/18): 1213-1224.
doi: 10.1089/ten.tea.2020.0323 |
[10] |
WANG Y, RUDYM D D, WALSH A, et al. In vivo degradation of three-dimensional silk fibroin scaff-olds[J]. Biomaterials, 2008, 29(24/25): 3415-28.
doi: 10.1016/j.biomaterials.2008.05.002 |
[11] |
WANG Y, BELLA E, LEE C S, et al. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration[J]. Biomaterials, 2010, 31(17): 4672-4681.
doi: 10.1016/j.biomaterials.2010.02.006 |
[12] |
YOSHIMIZU H. Preparation and characterization of silk fibroin powder and its application to enzyme immobilization[J]. J Appl Polym Sci, 1990, 40: 127-34.
doi: 10.1002/app.1990.070400111 |
[13] |
MIN B M, LEE G, KIM S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials, 2004, 25(7/8): 1289-1297.
doi: 10.1016/j.biomaterials.2003.08.045 |
[14] |
LI C, VEPARI C, JIN H J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(16): 3115-3124.
doi: 10.1016/j.biomaterials.2006.01.022 |
[15] |
MALAFAYA P B, SILVA G A, REIS R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications[J]. Adv Drug Deliv Rev, 2007, 59(4/5): 207-233.
doi: 10.1016/j.addr.2007.03.012 |
[16] |
WANG Y, KIM U J, BLASIOLI D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells[J]. Biomaterials, 2005, 26(34): 7082-7094.
doi: 10.1016/j.biomaterials.2005.05.022 |
[17] | RIBEIRO V P, PINA S, OLIVEIRA J M, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Adv Exp Med Biol, 2018, 1058: 305-325. |
[18] | BAKHSHANDEH B, ZARRINTAJ P, OFTADEH M O, et al. Tissue engineering; strategies, tissues, and biomaterials[J]. Biotechnology Genetic Engineering Revision, 2017, 33(2): 144-172. |
[19] |
SOHN S, STREY H H, GIDO S P. Phase behavior and hydration of silk fibroin[J]. Biomacromolecules, 2004, 5(3): 751-757.
doi: 10.1021/bm0343693 |
[20] |
YUCEL T, LOVETT M L, KAPLAN D L. Silk-based biomaterials for sustained drug delivery[J]. J Control Release, 2014, 190: 381-397.
doi: 10.1016/j.jconrel.2014.05.059 |
[21] |
BHATTACHARJEE P, KUNDU B, NASKAR D, et al. Silk scaffolds in bone tissue engineering: an over-view[J]. Acta Biomater, 2017, 63: 1-17.
doi: 10.1016/j.actbio.2017.09.027 |
[1] | 顾张弘, 姚响, 王锦思, 张耀鹏. 具有细胞黏附反差特性的单层平行丝素蛋白纤维图案的制备及其性能[J]. 纺织学报, 2022, 43(05): 1-6. |
[2] | 雷彩虹, 俞林双, 朱海霖, 郑涛, 陈建勇. 不同水解方式下蚕丝丝素蛋白材料的止血性能[J]. 纺织学报, 2022, 43(04): 15-19. |
[3] | 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138. |
[4] | 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77. |
[5] | 方帅军, 郑培晓, 程双娟, 李欢欢, 钱红飞. 甲基丙烯酰胺接枝桑蚕丝接枝率的数学模型构建与定量分析[J]. 纺织学报, 2022, 43(02): 156-161. |
[6] | 姚若彤, 赵婧媛, 闫一欣, 段立蓉, 王恬, 严佳, 张淑军, 李刚. 新型可降解编织结构神经再生导管的制备及其性能[J]. 纺织学报, 2022, 43(02): 125-131. |
[7] | 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52. |
[8] | 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8. |
[9] | 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189. |
[10] | 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186. |
[11] | 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184. |
[12] | 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48. |
[13] | 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53. |
[14] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[15] | 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79. |
|