纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 49-56.doi: 10.13475/j.fzxb.20210503908

• 纤维材料 • 上一篇    下一篇

纳米纤维基单向导湿抗菌敷料的制备及其性能

欧康康1,2,3, 祁琳雅1, 侯怡君1, 范天华1, 齐琨1(), 王宝秀2, 王华平2,3   

  1. 1.中原工学院 纺织服装产业研究院, 河南 郑州 451191
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.国家先进功能纤维创新中心, 江苏 苏州 215228
  • 收稿日期:2021-05-17 修回日期:2021-12-22 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 齐琨
  • 作者简介:欧康康(1990—),男,副教授,博士。主要研究方向为生物医用纳米纤维。
  • 基金资助:
    国家自然科学基金项目(52003048);河南省重点研发与推广专项(212102210041);河南省大学生创新创业训练计划项目(S202110465084);中国纺织工业联合会科技指导项目(2019028);中原工学院青年自然科学基金项目(K2022QN013);中原工学院青年骨干教师项目(2021XQG02)

Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings

OU Kangkang1,2,3, QI Linya1, HOU Yijun1, FAN Tianhua1, QI Kun1(), WANG Baoxiu2, WANG Huaping2,3   

  1. 1. Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. National Advanced Functional Fiber Innovation Center, Suzhou, Jiangsu 215228, China
  • Received:2021-05-17 Revised:2021-12-22 Published:2022-06-15 Online:2022-07-15
  • Contact: QI Kun

摘要:

针对现有湿性敷料易滋生细菌并在创伤处形成积液的问题,以力学性能优良的聚氨酯(PU)、亲水性聚丙烯腈和超吸水性的聚丙烯酸钠为基材,以聚六亚甲基胍盐酸盐(PHGC)为抗菌剂,采用静电纺丝法制备出由纤维尺寸不同的亲水外层和疏水内层组成的纳米纤维基双层敷料,探究疏水层厚度对双层敷料单向导湿效果的影响,并分析敷料结构与性能之间的关系。结果表明:当PU内层膜纺丝时间为1 h时,所制备的双层敷料可在3.9 s内由内向外单向传输液体,此时敷料的吸水率高达1 230%,透气率约为 6.7 mm/s,透湿率约为1 350 g/(m2·d),断裂强度为 6.5 MPa,断裂伸长率为45%;PU内层膜中添加0.06%的PHGC可使敷料对大肠杆菌和金黄色葡萄球菌的抑菌率达到95%以上,无细胞毒性且具备较低的细胞黏附性能。

关键词: 创伤敷料, 静电纺丝, 单向导湿, 抗菌性能, 纳米纤维

Abstract:

In order to deal with bacteria breeding and fluid formation on wound site, polyurethane (PU) with excellent mechanical properties, polyacrylonitrile with high hydrophilicity and sodium polyacrylate with superabsorbent water were used as the substrate, and polyhexamethyl guanidine hydrochloride (PHGC) was used as the antibacterial agent to create antibacterial wound dressings. The nanofiber-based bilayer dressing material composed of hydrophilic outer layer and hydrophobic inner layer with different fiber sizes was prepared by electrospinning. The influence of hydrophobic layer thickness on the unidirectional water-transport effect of bilayer dressing was investigated, and the relationship between the structure and properties of the dressing were analyzed. The results show that the prepared bilayer dressing material can transfer water unidirectionally from inside to outside in 3.9 s, and the water absorption of the dressing is as high as 1 230%. The air permeability is 6.7 mm/s, the moisture permeability is 1 350 g/(m2·d), the breaking strength is 6.5 MPa and the elongation at break is 45%. The addition of 0.06% PHGC to PU inner layer makes the antibacterial rate of dressing against Escherichia coli and Staphylococcus aureus reach more than 95%. The prepared bilayer dressings show no cytotoxicity and low cell adhesion.

Key words: wound dressing, electrospinning, unidirectional water-transport, antibacterial property, nanofiber

中图分类号: 

  • TS174.1

图1

双层纳米纤维敷料的形貌、直径分布图及其水接触角"

图2

内、外层膜和不同双层敷料正面的动态接触角"

图3

墨滴在样品中的扩散过程"

图4

双层敷料正反向液体传输过程"

表1

双层敷料的物理性能"

样品 透气率/
(mm·s-1)
透湿率/
(g·m-2·d-1)
平衡含
水量/%
吸水
率/%
断裂
强度/
MPa
断裂
伸长
率/%
内层 6.2±0.2 1 350±23 78±1.0 377±23 6.0±0.5 40±5
外层 7.5±0.1 1 970±25 93±0.6 970±27 8.0±0.5 80±5
双层
敷料
6.7±0.5 1 350±20 92±2.0 1 230±50 6.5±0.5 45±5

图5

PHGC和双层敷料的热重曲线图"

图6

PHGC、PU-PHGC和PU纳米纤维膜的红外图谱"

图7

双层敷料的抗菌性能"

图8

内外层膜及敷料浸提液对GES-1细胞活力的影响"

图9

双层敷料培养48 h后的细胞黏附性能"

[1] PEREIRA R F, BARTOLO P J. Traditional therapies for skin wound healing[J]. Advances in Wound Care, 2016, 5(5): 208-229.
doi: 10.1089/wound.2013.0506
[2] SHI L X, LIU X, WANG W S, et al. A self-pumping dressing for draining excessive biofluid around wounds[J]. Advanced Materials, 2019, 31(5):1804187.
[3] BABAR A A, ZHAO X, WANG X, et al. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture trans-port[J]. Journal of Colloid and Interface Science, 2020, 577: 207-216.
doi: 10.1016/j.jcis.2020.05.062
[4] ZHAO Y, WANG H, ZHOU H, et al. Directional fluid transport in thin porous materials and its functional applications[J]. Small, 2017, 13(4): 1601070.
doi: 10.1002/smll.201601070
[5] GHOSAL K, AGATEMOR C, ŠPITÁLSKY Z, et al. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocompo-sites[J]. Chemical Engineering Journal, 2019, 358:1262-1278.
doi: 10.1016/j.cej.2018.10.117
[6] 耿欢. 用于伤口敷料的纳米纤维膜的设计制备及应用研究[D]. 北京: 北京化工大学, 2017: 5-6.
GENG Huan. Study on the design, preparation and application of nanofiber membrane for wound dressing[D]. Beijing: Beijing University of Chemical Technology, 2017: 5-6.
[7] YANG W, LI R, FANG C P, et al. Surface modification of polyamide nanofiber membranes by polyurethane to simultaneously improve their mechanical strength and hydrophobicity for breathable and waterproof applications[J]. Progress in Organic Coatings, 2019, 131:67-72.
doi: 10.1016/j.porgcoat.2019.02.012
[8] WANG D, YUE Y Y, WANG Q X, et al. Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: morphology, wettability, and mechanical proper-ties[J]. Applied Surface Science, 2020, 510: 145462.
doi: 10.1016/j.apsusc.2020.145462
[9] 王鑫, 赵莹, 李妮. 聚丙烯腈纳米纤维增强聚氨酯基复合膜的制备及其力学性能的研究[J]. 现代纺织技术, 2019, 27(2):12-17.
WANG Xin, ZHAO Ying, LI Ni. Study on the Preparation of polyurethane-based composite film reinforced with polyacrylonitrile nanofiber and its mechanical properties[J]. Advanced Textile Technology, 2019, 27(2):12-17.
[10] 祁琳雅. 纳米纤维基单向导湿创伤敷料的结构设计及其性能研究[D]. 郑州:中原工学院, 2021: 11-12.
QI Linya. Structure design and performance of nanofiber basedunidirectional water transport wound dressing[D]. Zhengzhou: Zhongyuan University of Technology, 2021: 11-12.
[11] SHITAL Y, MANI P I, TULIKA R, et al. High absorbency cellulose acetate electrospun nanofibers for feminine hygiene application[J]. Applied Materials Today, 2016, 4: 62-70.
doi: 10.1016/j.apmt.2016.07.002
[12] TROP M, NOVAK M, RODL S, et al. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient[J]. Journal of Trauma and Acute Care Surgery, 2006, 60(3): 648-652.
doi: 10.1097/01.ta.0000208126.22089.b6
[13] HOMAEIGOHAR S, BOCCACCINI A R. Antibacterial biohybrid nanofibers for wound dressings[J]. Acta Biomaterialia, 2020, 107: 25-49.
doi: 10.1016/j.actbio.2020.02.022
[14] ZHU L L, WANG L, ZHANG X Q, et al. Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection[J]. Carbon, 2020, 159: 185-194.
doi: 10.1016/j.carbon.2019.12.035
[15] LIANG D H, LU Z, YANG H, et al. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3958-3968.
[16] OU K K, WU X J, WANG B X, et al. Controlled in situ graft polymerization of DMAEMA onto cotton surface via SI-ARGET ATRP for low-adherent wound dressings[J]. Cellulose, 2017, 24:5211-5224.
doi: 10.1007/s10570-017-1449-9
[17] CHEN J, WEI D F, GONG W L, et al. Hydrogen-bond assembly of poly (vinyl alcohol) and polyhexamethylene guanidine for nonleaching and transparent antimicrobial films[J]. ACS Applied Materials & Interfaces, 2018, 10(43):37535-37543.
[18] LI P, SUN S Y, DONG A, et al. Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity[J]. Applied Surface Science, 2015, 355(15): 446-462.
doi: 10.1016/j.apsusc.2015.07.148
[19] 李国庆, 李平平, 刘瀚霖, 等. 聚丙烯腈/聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(3): 20-25.
LI Guoqing, LI Pingping, LIU Hanlin, et al. Preparation and properties of polyacrylonitrile/polyurethane transparent film[J]. Journal of Textile Research, 2020, 41(3): 20-25.
[1] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[2] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[3] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[4] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[5] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[6] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[7] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[8] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[9] 孔维庆, 胡述锋, 俞森龙, 周哲, 朱美芳. 木质纤维素功能材料的研究进展[J]. 纺织学报, 2022, 43(04): 1-9.
[10] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[11] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[12] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[13] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[14] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[15] 张青松, 张迎晨, 邱振中, 吴红艳, 张志茹, 张夏楠. 凉感面料开发及其吸湿凉感机制研究[J]. 纺织学报, 2022, 43(02): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!