纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 63-69.doi: 10.13475/j.fzxb.20210701808

• 纺织工程 • 上一篇    下一篇

密度非均匀分布纬编针织物的变形预测及仿真

汝欣1,2, 朱婉珍1,2, 史伟民1,2(), 彭来湖1,2,3   

  1. 1.浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
    2.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    3.浙江理工大学龙港研究院有限公司, 浙江 温州 325802
  • 收稿日期:2021-07-06 修回日期:2022-03-18 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 史伟民
  • 作者简介:汝欣(1989—),女,讲师,博士。主要研究方向为纺织机械CAD、智能纺织装备技术。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000);浙江省公益技术研究计划项目(LGG21E050024);浙江理工大学科研启动基金项目(18022224-Y);浙江省博士后科研项目特别资助项目(ZJ2020004)

Deformation prediction and simulation of weft knitted fabrics with non-uniform density distribution

RU Xin1,2, ZHU Wanzhen1,2, SHI Weimin1,2(), PENG Laihu1,2,3   

  1. 1. College of Mechanical and Automatic Control, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    3. Research Institute of Zhejiang Sci-Tech University in Longgang Co., Ltd.,Wenzhou, Zhejiang 325802, China
  • Received:2021-07-06 Revised:2022-03-18 Published:2022-06-15 Online:2022-07-15
  • Contact: SHI Weimin

摘要:

针对不同密度的纬编针织物组织结合形成的织物成品变形明显、成品效果预测难度大的问题,提出了一种密度非均匀分布的纬编针织物的变形预测及仿真方法。基于织物中不同密度成员织物组织的具体分布情况,提出了对应的织物弹簧-质点模型的初始状态的确定方法,在此基础上对质点进行受力分析并建立相应的力学微分方程,通过数值方法求解力学微分方程得到质点位置;基于二维Peirce线圈模型建立NURBS线圈模型,并确定曲线控制顶点和织物圈距、圈高的关系,进一步建立质点-控制点关联式;将质点受力偏移后的位置代入质点-控制点关联式,实现带有曲线线圈形态的密度非均匀分布的纬编针织物变形模拟;将织物仿真图与真实针织样品进行对比,结果表明仿真效果可靠。

关键词: 密度, 纬编针织物, 变形预测, 弹簧-质点模型, 织物仿真

Abstract:

Aiming at the problem of obvious deformation of the finished fabric formed by the combination of weft knitted fabric stitches of different densities and the difficulty in predicting the finished product effect, a deformation prediction and simulation method of the weft knitted fabrics with non-uniform distribution of density was proposed. Based on the specific distribution of different constituent fabric stitches in the fabric, the method of determining the initial state of the corresponding fabric spring-mass point model was employed, based on which the stress analysis of the mass point and the corresponding mechanical differential equations were established, and the position of the mass point was obtained by solving the mechanical differential equations numerically. The NURBS loop model was established based on the two-dimensional Peirce loop model, and the relationship between the control vertex and the fabric loop distance and height was determined to further establish the mass point-control point correlation equation. The position of the mass point after the force shift was substituted into the mass point-control point correlation equation to realize the deformation simulation of weft knitted fabrics with non-uniform density distribution of curved loop. The fabric simulation map was compared with the practical knitted fabrics, and the results show that the simulation effect is reliable.

Key words: density, weft knitted fabric, deformation prediction, spring-mass model, fabric simulation

中图分类号: 

  • TS186.2

图1

织物变形模拟过程"

图2

主要研究流程"

图3

织物的二维网格"

图4

弹簧-质点模型"

图5

单个线圈坐标与尺寸图"

图6

织物的弹簧-质点模型"

图7

质点受力分析图"

图8

成圈模型"

图9

线圈纵向串套关系示意图"

图10

线圈-网格模型"

表1

线圈控制点比例系数取值表"

类型 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
kx,i 0 0.3 0.4 0.1 0.2 0.8 0.9 0.6 0.7 1
ky,i 0 0 0.47 1.53 1.88 1.88 1.53 0.47 0 0

图11

样品实物图"

表2

织物规格参数表"

样品编号 纱线原料 总纵行数 总横列数 组织类型 成员组织尺寸 密度
纵行数 横列数 横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
平针组织1 30 10 9 17
1 39.37 tex×7腈纶 30 30 平针组织2 30 10 8 13
平针组织3 30 10 6.5 11
2 39.37 tex×7腈纶 30 30 平针组织2 14 14 8 13
平针组织3 - - 6.5 11

表3

计算机织物仿真的部分信息表"

织物
样式
织物总
横列数
织物总
纵行数
仿真时间
(步长)/s
仿真迭代
次数
仿真时
间/min
样品1 60 102 0.12 200 4
样品2

图12

样品仿真图"

[1] 沙莎, 蒋高明, 张爱军, 等. 纬编针织物线圈建模与变形三维模拟[J]. 纺织学报, 2017, 38(2):177-183.
SHA Sha, JIANG Gaoming, ZHANG Aijun, et al. Three-dimensional modeling and deformation for weft knitted fabric loops[J]. Journal of Textile Research, 2017, 38(2): 177-183.
[2] 邓逸飞, 邓中民, 柯薇. 应用线圈模型的羊毛衫组织搭配与变形模拟[J]. 纺织学报, 2018, 39(4):151-157.
DENG Yifei, DENG Zhongmin, KE Wei. Stitch design and deformation simulation of cardigan based on loop model[J]. Journal of Textile Research, 2018, 39(4): 151-157.
[3] 雷惠, 丛洪莲, 张爱军, 等. 基于质点模型的横编织物结构研究与计算机模拟[J]. 纺织学报, 2015, 36(2):43-48.
LEI Hui, CONG Honglian, ZHANG Aijun, et al. Research of flat knitted structure and computer simulation based on particle model[J]. Journal of Textile Research, 2015, 36(2): 43-48.
[4] MOZAFARY V, PAYVANDY P, REZAEIAN M. A novel approach for simulation of curling behavior of knitted fabric based on mass spring model[J]. The Journal of The Textile Institute, 2018, 109(12): 1620-1641.
doi: 10.1080/00405000.2018.1453635
[5] KARMON A, STERMAN Y, SHAKED T, et al. KNITIT:a computational tool for design, simulation, and fabrication of multiple structured knits[C]// Proceedings of the 2nd ACM Syposium on computational Fubrication. New York: ACM, 2018: 12-16.
[6] 龙海如. 针织学[M]. 北京: 中国纺织出版社, 2008: 1-60.
LONG Hairu. Knitting science[M]. Beijing: China Textile & Apparel Press, 2008: 1-60.
[7] 赵磊. 纬编针织物线圈的三维模拟及变形实现[D]. 武汉: 武汉纺织大学, 2011:24-25.
ZHAO Lei. Three-dimensional simulation and deformation realization of weft loop[D]. Wuhan: Wuhan Textile University, 2011: 34-56.
[8] SHA S, JIANG G, MA P, et al. 3-D dynamic behaviors simulation of weft knitted fabric based on particle system[J]. Fibers and Polymers, 2015, 16(8):1812-1817.
doi: 10.1007/s12221-015-5254-5
[9] 王贺. 融合智能算法的布料仿真建模研究[D]. 太原: 中北大学, 2019:33-34.
WANG He. Research on fabric simulation modeling fused with intelligent algorithm[D]. Taiyuan: North University of China, 2019:33-34.
[10] 沙莎. 基于弹簧-质点模型的纬编针织物三维模拟研究[D]. 无锡: 江南大学, 2017:25-26.
SHA Sha. Study on 3D simulation of weft knitted fabrics based on spring-particle model[D]. Wuxi: Jiangnan University, 2017:25-26.
[11] 蔡洪斌, 靳碧鹏, 何明耘. 实时布料运动仿真技术[J]. 电子科技大学学报, 2007(2):242-245.
CAI Hongbin, JIN Bipeng, HE Mingyun. Real-time cloth motion simulation technology[J]. Journal of University of Electronic Science and Technology of China, 2007(2): 242-245.
[12] 蒙冉菊, 方园. NURBS样条曲线纬编针织物线圈结构的建模分析[J]. 浙江理工大学学报, 2007, 24(3): 219-224.
MENG Ranju, FANG Yuan. The modeling analysis of knitting fabric loop construction using NURBS curve[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(3): 219-224.
[13] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001:240-456.
SHI Fazhong. Computer aided geometric design and non-uniform rational B-spline[M]. Beijing: Higher Education Press, 2001: 240-456.
[14] PEIRCE F T. Geometrical principles applicable to the design of functional fabrics[J]. Textile Research Journal, 1947, 17(3): 123-147.
doi: 10.1177/004051754701700301
[15] DURUPINAR F, GUDUKBAY U. Procedural visualization of knitwear and woven cloth[J]. Computers and Graphics (Pergamon), 2007, 31(5):778-783.
doi: 10.1016/j.cag.2007.06.002
[1] 张青松, 张迎晨, 邱振中, 吴红艳, 张志茹, 张夏楠. 凉感面料开发及其吸湿凉感机制研究[J]. 纺织学报, 2022, 43(02): 132-139.
[2] 胡旭东, 宋炎锋, 汝欣, 彭来湖. 大小头筒状纬编针织物建模及其线圈长度逆向设计[J]. 纺织学报, 2021, 42(04): 80-84.
[3] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[4] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[5] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[6] 刘海桑, 蒋高明, 董智佳. 基于Web的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[7] 周其洪, 孙宝通, 岑均豪, 占齐宸. 采用激光扫描建模的筒子纱卷绕密度测量方法[J]. 纺织学报, 2021, 42(01): 96-102.
[8] 戴宁, 胡旭东, 彭来湖, 钟垚森. 无缝内衣机密度电动机的控制技术[J]. 纺织学报, 2020, 41(06): 161-167.
[9] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[10] 孙帅, 缪旭红, 张琦, 王瑾. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(03): 51-55.
[11] 李鹏飞, 严凯, 张缓缓, 景军锋. 基于最大熵与密度聚类相融合的毛羽检测[J]. 纺织学报, 2019, 40(07): 158-162.
[12] 陈美玉, 孙润军, 张长琦, 刘先锋. 经编间隔织物的缓压性能[J]. 纺织学报, 2019, 40(07): 58-63.
[13] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[14] 韩晓雪, 缪旭红. 氨纶纬编导电针织物纵向电力学性能[J]. 纺织学报, 2019, 40(04): 60-65.
[15] 陈磊, 裴克梅, 康晓静, 李文瑛, 赵丰, 刘剑. 表面增强拉曼光谱对纺织品文物中茜素和茜紫素的快速检测[J]. 纺织学报, 2019, 40(03): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!