纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 29-35.doi: 10.13475/j.fzxb.20210506707
薛超1,2, 朱浩1,2, 杨晓川1,2, 任煜1,2, 刘婉婉1,2()
XUE Chao1,2, ZHU Hao1,2, YANG Xiaochuan1,2, REN Yu1,2, LIU Wanwan1,2()
摘要:
为改善碳纳米管(CNT)作为导电填料弹性性能不足的问题,以CNT和液态金属(LM)为导电填料,热塑性聚氨酯(TPU)为基体,选用N,N-二甲基甲酰胺(DMF)作为溶剂,去离子水为凝固浴,通过湿法纺丝制备了CNT/LM/TPU导电纤维,并研究了LM和CNT 2种导电填料对纤维结构和性能的影响。结果表明:当导电填料LM质量分数为40%,CNT质量分数为10%时,CNT/LM/TPU纤维的力学性能大幅度提升,断裂强度为10.16 MPa,断裂伸长率为252%;CNT/LM/TPU纤维具有良好的导电性能,其电导率为5.41 S/m,可以用作导线点亮电路,在100%和200%的拉伸应变下电路仍有电流通过,且经20次循环拉伸后仍具有稳定的电阻回复性;此外,该纤维还具有良好的抗菌性能,对金黄色葡萄球菌的抑菌率达到92.61%。
中图分类号:
[1] | 郭俊敏. 导电纤维的性能和制备[J]. 金山油化纤, 2003, 22(2):34-37. |
GUO Junmin. Properties and preparation of conductive fibers[J]. Jinshan Oil Chemical Fiber, 2003, 22 (2):34-37. | |
[2] | 程芳华, 于云飞, 高嘉辰, 等. 热塑性聚氨酯/碳纳米管湿纺导电纳米复合纤维的应变响应行为研究[J]. 塑料科技, 2018, 46(9):56-60. |
CHENG Fanghua, YU Yunfei, GAO Jiachen, et al. Strain response behavior of thermoplastic polyurethane/carbon nanotubes wet spinning conductive nanocomposite fibers[J]. Plastic Science and Technology, 2018, 46(9):56-60. | |
[3] |
LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105954.
doi: 10.1016/j.nanoen.2021.105954. |
[4] |
COSTALIN M, MJEJRI I, PENIN N, et al. Films of directionally oriented carbon nanotubes as counter electrodes for electrochromic devices[J]. Journal of Physics and Chemistry of Solids, 2021. DOI: 10.1016/j.jpcs.2021.110035.
doi: 10.1016/j.jpcs.2021.110035. |
[5] |
ZHANG H, WU W, MA H, et al. Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wearables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2021.126193.
doi: 10.1016/j.colsurfa.2021.126193. |
[6] |
ZHANG X, LU W, ZHOU G, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902028.
doi: 10.1002/adma.201902028. |
[7] | 郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016, 12(9):143-144. |
ZHENG Shaoming, LAI Xianghui, LIN Benshu. The development and application of conductive fibers[J]. China Fiber Inspection, 2016, 12 (9):143-144. | |
[8] | 曾敏, 伍江涛, 冯猛, 等. 碳系填料在聚合物基导电复合材料中的应用[J]. 橡胶工业, 2010, 57(6):378-382. |
ZENG Min, WU Jiangtao, FENG Meng, et al. Application of carbon filler in polymer-based conductive composites[J]. Rubber Industry, 2010, 57 (6):378-382. | |
[9] | 张国玺, 周笑薇. 多巴胺/银/聚氨酯导电复合薄膜的制备[J]. 合成树脂及塑料, 2016, 33(5):36-38. |
ZHANG Guoxi, ZHOU Xiaowei. Preparation of dopamine/silver/polyurethane conductive composite films[J]. Synthetic Resins and Plastics, 2016, 33 (5):36-38. | |
[10] | 朱华, 钟培英, 蒲青松, 等. 炭黑导电浆料的制备及电性能分析[J]. 山东化工, 2021, 50(4):46-48. |
ZHU Hua, ZHONG Peiying, PU Qingsong, et al. Preparation and electrical properties analysis of carbon black conductive paste[J]. Shandong Chemical Industry, 2021, 50 (4):46-48. | |
[11] | BANERJEE S, KAR K K. Characteristics of carbon nanotubes[J]. Springer Series in Materials Science, 2020, 300(14):179-214. |
[12] |
YUN G, TANG S, LU H, et al. Hybrid-filler stretchable conductive composites: from fabrication to application[J]. Small Science, 2021.DOI: 10.1002/smsc.202000080.
doi: 10.1002/smsc.202000080. |
[13] |
JEONG H D, KIM S G, CHOI G M, et al. Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.128650.
doi: 10.1016/j.cej.2021.128650. |
[14] | 邓卫斌, 朱瑞, 李军, 等. 碳纳米管/聚氨酯导电复合材料研究进展[J]. 塑料工业, 2018, 46(8):1-7. |
DENG Weibin, ZHU Rui, LI Jun, et al. Research progress of carbon nanotubes/polyurethane conductive composites[J]. Plastic Industry, 2018, 46 (8): 1-7. | |
[15] | 郭怡, 严磊, 陈宇哲, 等. 碳纳米管改性热塑性聚氨酯基纳米复合材料研究进展[J]. 工程塑料应用, 2019, 47(6):139-142. |
GUO Yi, YAN Lei, CHEN Yuzhe, et al. Research progress of carbon nanotubes modified thermoplastic polyurethane matrix nanocomposites[J]. Application of Engineering Plastics, 2019, 47(6):139-142. | |
[16] | 王晴雯, 董仁琼, 吉笑盈, 等. TPU/EVA/CNT双逾渗导电复合材料的制备和性能[J]. 高分子材料科学与工程, 2019, 35(5):104-109. |
WANG Qingwei, DONG Renqiong, JI Xiaoying, et al. Preparation and properties of TPU/EVA/CNT double percolation conductive composites[J]. Polymer Materials Science and Engineering, 2019, 35(5) :104-109. | |
[17] |
MOU L, QI J, TANG L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics[J]. Small, 2020.DOI: 10.1002/smll.202005336.
doi: 10.1002/smll.202005336. |
[18] |
KWON K Y, TRUONG V K, KRISNADI F, et al. Surface modification of gallium-based liquid metals: mechanisms and applications in biomedical sensors and soft actuators[J]. Advanced Intelligent Systems, 2021.DOI: 10.1002/aisy.202000159.
doi: 10.1002/aisy.202000159. |
[19] |
FASSLER A, MAJIDI C. Liquid-phase metal inclusions for a conductive polymer composite[J]. Advanced Materials, 2015, 27(11):1928-1932.
doi: 10.1002/adma.201405256 |
[20] |
YUN G, TANG S, SUN S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconduc-tivity[J]. Nature Communications, 2019, 10(1):1-9.
doi: 10.1038/s41467-018-07882-8 |
[21] |
LIU H, LI Y, DAI K, et al. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applica-tions[J]. Journal of Materials Chemistry C, 2016, 4(1):157-166.
doi: 10.1039/C5TC02751A |
[22] | 刘畅, 韩华, 叶婷婷, 等. 耐阴离子洗涤剂高效抗菌棉织物的制备及性能[J]. 纺织科学与工程学报, 2021, 38(1):23-29. |
LIU Chang, HAN Hua, YE Tingting, et al. Preparation and properties of high-efficiency antibacterial cotton fabric with anion-resistant detergent[J]. Journal of Textile Science and Engineering, 2021, 38 (1):23-29. | |
[23] |
WEN M, SUN X, SU L, et al. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion[J]. Polymer, 2012, 53(7):1602-1610.
doi: 10.1016/j.polymer.2012.02.003 |
[24] | 曾尤, 刘鹏飞, 赵龙, 等. 碳纳米管导电网络结构对复合材料拉伸变形的响应性[J]. 新型炭材料, 2013, 28(2):88-93. |
ZENG You, LIU Pengfei, ZHAO Long, et al. Response of carbon nanotube conductive network structure to tensile deformation of composites[J]. New Carbon' Materials, 2013, 28 (2):88-93. | |
[25] | 吕毅华, 李昕, 刘周, 等. 镓在抗菌方面的研究进展[J]. 中国抗生素杂志, 2018, 43(4):394-400. |
LÜ Yihua, LI Xin, LIU Zhou, et al. Research progress of gallium in antibacterial[J]. Chinese Journal of Antibiotics, 2018, 43 (4):394-400. | |
[26] | 熊建钧, 严骏杰, 杨敏. 镓基液态金属微/纳米液滴的合成及其在生物医学中的应用[J]. 生物医学工程研究, 2020, 39(4):425-430. |
XIONG Jianjun, YAN Junjie, YANG Min. Synthesis of gallium-based liquid metal micro/nano droplets and their applications in biomedicine[J]. Biomedical Engineering Research, 2020, 39 (4):425-430. |
[1] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
[2] | 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91. |
[3] | 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193. |
[4] | 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49. |
[5] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
[6] | 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80. |
[7] | 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42. |
[8] | 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20. |
[9] | 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23. |
[10] | 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40. |
[11] | 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82. |
[12] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[13] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[14] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[15] | 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154. |
|