纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 29-35.doi: 10.13475/j.fzxb.20210506707

• 纤维材料 • 上一篇    下一篇

聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能

薛超1,2, 朱浩1,2, 杨晓川1,2, 任煜1,2, 刘婉婉1,2()   

  1. 1.南通大学 安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
    2.南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2021-05-25 修回日期:2022-03-29 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 刘婉婉
  • 作者简介:薛超(1997—),男,硕士生。主要研究方向为弹性导电纤维设计开发。
  • 基金资助:
    浙江省“尖兵”“领燕”研发攻关计划项目(2022C01166);南通市科技计划项目(JC2021038);江苏高校“青蓝工程”资助项目(苏教师函[2020]10号)

Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers

XUE Chao1,2, ZHU Hao1,2, YANG Xiaochuan1,2, REN Yu1,2, LIU Wanwan1,2()   

  1. 1. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, Jiangsu 226019, China
    2. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2021-05-25 Revised:2022-03-29 Published:2022-07-15 Online:2022-07-29
  • Contact: LIU Wanwan

摘要:

为改善碳纳米管(CNT)作为导电填料弹性性能不足的问题,以CNT和液态金属(LM)为导电填料,热塑性聚氨酯(TPU)为基体,选用N,N-二甲基甲酰胺(DMF)作为溶剂,去离子水为凝固浴,通过湿法纺丝制备了CNT/LM/TPU导电纤维,并研究了LM和CNT 2种导电填料对纤维结构和性能的影响。结果表明:当导电填料LM质量分数为40%,CNT质量分数为10%时,CNT/LM/TPU纤维的力学性能大幅度提升,断裂强度为10.16 MPa,断裂伸长率为252%;CNT/LM/TPU纤维具有良好的导电性能,其电导率为5.41 S/m,可以用作导线点亮电路,在100%和200%的拉伸应变下电路仍有电流通过,且经20次循环拉伸后仍具有稳定的电阻回复性;此外,该纤维还具有良好的抗菌性能,对金黄色葡萄球菌的抑菌率达到92.61%。

关键词: 碳纳米管, 液态金属, 热塑性聚氨酯, 导电纤维, 湿法纺丝

Abstract:

In order to improve the elastic properties of carbon nanotubes as conductive fillers, carbon nanotubes (CNT) and liquid metal (LM) were used as conductive fillers, thermoplastic polyurethane (TPU) was used as matrix, N, N-dimethylformamide was used as solvent, and deionized water was used as coagulation bath to produce the CNT/LM/TPU conductive fibers through the wet spinning process. The effects of LM and CNT on the structure and properties of fibers were studied. The results show that when the conductive filler content is 40% for LM and 10% for CNT, the mechanical properties of CNT/LM/TPU fiber were greatly improved with the fracture stress reaching 10.16 MPa and the elongation at break 252%. The CNT/LM/TPU fiber has good electrical conductivity, which is 5.41 S/m. Circuit experiments show that the fiber can be used as a wire lighting circuit, and the circuit can still have current through under the strain levels of 100% and 200%. CNT/LM/TPU fiber has excellent recovery performance, and it still has stable resistance recovery after 20 repeated tensile loading. In addition, the fiber also had good antibacterial properties, and the antibacterial rate against Staphylococcus aureus reaches 92.61%.

Key words: carbon nanotube, liquid metal, thermoplastic polyurethane, conductive fiber, wet spinning

中图分类号: 

  • TQ190.8

表1

纺丝液配方"

样品编号 TPU质量分数 CNT质量分数 LM质量分数
1# 100
2# 95 5
3# 90 10
4# 60 40
5# 55 5 40
6# 50 10 40

图1

TPU、CNT/TPU和CNT/LM/TPU纤维的扫描电镜照片"

图2

6#纤维的截面电镜照片及EDS图"

图3

6#纤维的表面元素分布图"

图4

纤维的应力-应变曲线"

表2

不同纤维样品的电导率"

样品编号 电导率/(S·m-1)
1#
2# 6.4×10-2
3# 1.59
4#
5# 2.96
6# 5.41

图5

CNT/LM/TPU纤维用作导线的电路实验结果"

图6

纤维拉伸过程中的导电模型"

图7

不同应变拉伸下样品6#相对电阻的变化"

表3

不同纤维样品的抑菌率"

样品编号 空白对照样24 h
活菌浓度/个
抗菌试样24 h
活菌浓度/个
抑菌率/%
3# 213×104 132×104 38.03
6# 203×104 15×104 92.61
[1] 郭俊敏. 导电纤维的性能和制备[J]. 金山油化纤, 2003, 22(2):34-37.
GUO Junmin. Properties and preparation of conductive fibers[J]. Jinshan Oil Chemical Fiber, 2003, 22 (2):34-37.
[2] 程芳华, 于云飞, 高嘉辰, 等. 热塑性聚氨酯/碳纳米管湿纺导电纳米复合纤维的应变响应行为研究[J]. 塑料科技, 2018, 46(9):56-60.
CHENG Fanghua, YU Yunfei, GAO Jiachen, et al. Strain response behavior of thermoplastic polyurethane/carbon nanotubes wet spinning conductive nanocomposite fibers[J]. Plastic Science and Technology, 2018, 46(9):56-60.
[3] LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105954.
doi: 10.1016/j.nanoen.2021.105954.
[4] COSTALIN M, MJEJRI I, PENIN N, et al. Films of directionally oriented carbon nanotubes as counter electrodes for electrochromic devices[J]. Journal of Physics and Chemistry of Solids, 2021. DOI: 10.1016/j.jpcs.2021.110035.
doi: 10.1016/j.jpcs.2021.110035.
[5] ZHANG H, WU W, MA H, et al. Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wearables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2021.126193.
doi: 10.1016/j.colsurfa.2021.126193.
[6] ZHANG X, LU W, ZHOU G, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902028.
doi: 10.1002/adma.201902028.
[7] 郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016, 12(9):143-144.
ZHENG Shaoming, LAI Xianghui, LIN Benshu. The development and application of conductive fibers[J]. China Fiber Inspection, 2016, 12 (9):143-144.
[8] 曾敏, 伍江涛, 冯猛, 等. 碳系填料在聚合物基导电复合材料中的应用[J]. 橡胶工业, 2010, 57(6):378-382.
ZENG Min, WU Jiangtao, FENG Meng, et al. Application of carbon filler in polymer-based conductive composites[J]. Rubber Industry, 2010, 57 (6):378-382.
[9] 张国玺, 周笑薇. 多巴胺/银/聚氨酯导电复合薄膜的制备[J]. 合成树脂及塑料, 2016, 33(5):36-38.
ZHANG Guoxi, ZHOU Xiaowei. Preparation of dopamine/silver/polyurethane conductive composite films[J]. Synthetic Resins and Plastics, 2016, 33 (5):36-38.
[10] 朱华, 钟培英, 蒲青松, 等. 炭黑导电浆料的制备及电性能分析[J]. 山东化工, 2021, 50(4):46-48.
ZHU Hua, ZHONG Peiying, PU Qingsong, et al. Preparation and electrical properties analysis of carbon black conductive paste[J]. Shandong Chemical Industry, 2021, 50 (4):46-48.
[11] BANERJEE S, KAR K K. Characteristics of carbon nanotubes[J]. Springer Series in Materials Science, 2020, 300(14):179-214.
[12] YUN G, TANG S, LU H, et al. Hybrid-filler stretchable conductive composites: from fabrication to application[J]. Small Science, 2021.DOI: 10.1002/smsc.202000080.
doi: 10.1002/smsc.202000080.
[13] JEONG H D, KIM S G, CHOI G M, et al. Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.128650.
doi: 10.1016/j.cej.2021.128650.
[14] 邓卫斌, 朱瑞, 李军, 等. 碳纳米管/聚氨酯导电复合材料研究进展[J]. 塑料工业, 2018, 46(8):1-7.
DENG Weibin, ZHU Rui, LI Jun, et al. Research progress of carbon nanotubes/polyurethane conductive composites[J]. Plastic Industry, 2018, 46 (8): 1-7.
[15] 郭怡, 严磊, 陈宇哲, 等. 碳纳米管改性热塑性聚氨酯基纳米复合材料研究进展[J]. 工程塑料应用, 2019, 47(6):139-142.
GUO Yi, YAN Lei, CHEN Yuzhe, et al. Research progress of carbon nanotubes modified thermoplastic polyurethane matrix nanocomposites[J]. Application of Engineering Plastics, 2019, 47(6):139-142.
[16] 王晴雯, 董仁琼, 吉笑盈, 等. TPU/EVA/CNT双逾渗导电复合材料的制备和性能[J]. 高分子材料科学与工程, 2019, 35(5):104-109.
WANG Qingwei, DONG Renqiong, JI Xiaoying, et al. Preparation and properties of TPU/EVA/CNT double percolation conductive composites[J]. Polymer Materials Science and Engineering, 2019, 35(5) :104-109.
[17] MOU L, QI J, TANG L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics[J]. Small, 2020.DOI: 10.1002/smll.202005336.
doi: 10.1002/smll.202005336.
[18] KWON K Y, TRUONG V K, KRISNADI F, et al. Surface modification of gallium-based liquid metals: mechanisms and applications in biomedical sensors and soft actuators[J]. Advanced Intelligent Systems, 2021.DOI: 10.1002/aisy.202000159.
doi: 10.1002/aisy.202000159.
[19] FASSLER A, MAJIDI C. Liquid-phase metal inclusions for a conductive polymer composite[J]. Advanced Materials, 2015, 27(11):1928-1932.
doi: 10.1002/adma.201405256
[20] YUN G, TANG S, SUN S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconduc-tivity[J]. Nature Communications, 2019, 10(1):1-9.
doi: 10.1038/s41467-018-07882-8
[21] LIU H, LI Y, DAI K, et al. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applica-tions[J]. Journal of Materials Chemistry C, 2016, 4(1):157-166.
doi: 10.1039/C5TC02751A
[22] 刘畅, 韩华, 叶婷婷, 等. 耐阴离子洗涤剂高效抗菌棉织物的制备及性能[J]. 纺织科学与工程学报, 2021, 38(1):23-29.
LIU Chang, HAN Hua, YE Tingting, et al. Preparation and properties of high-efficiency antibacterial cotton fabric with anion-resistant detergent[J]. Journal of Textile Science and Engineering, 2021, 38 (1):23-29.
[23] WEN M, SUN X, SU L, et al. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion[J]. Polymer, 2012, 53(7):1602-1610.
doi: 10.1016/j.polymer.2012.02.003
[24] 曾尤, 刘鹏飞, 赵龙, 等. 碳纳米管导电网络结构对复合材料拉伸变形的响应性[J]. 新型炭材料, 2013, 28(2):88-93.
ZENG You, LIU Pengfei, ZHAO Long, et al. Response of carbon nanotube conductive network structure to tensile deformation of composites[J]. New Carbon' Materials, 2013, 28 (2):88-93.
[25] 吕毅华, 李昕, 刘周, 等. 镓在抗菌方面的研究进展[J]. 中国抗生素杂志, 2018, 43(4):394-400.
LÜ Yihua, LI Xin, LIU Zhou, et al. Research progress of gallium in antibacterial[J]. Chinese Journal of Antibiotics, 2018, 43 (4):394-400.
[26] 熊建钧, 严骏杰, 杨敏. 镓基液态金属微/纳米液滴的合成及其在生物医学中的应用[J]. 生物医学工程研究, 2020, 39(4):425-430.
XIONG Jianjun, YAN Junjie, YANG Min. Synthesis of gallium-based liquid metal micro/nano droplets and their applications in biomedicine[J]. Biomedical Engineering Research, 2020, 39 (4):425-430.
[1] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[2] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[3] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[4] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[5] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[6] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[7] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[8] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[9] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[10] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[11] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[12] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[13] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[14] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[15] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .