纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 47-54.doi: 10.13475/j.fzxb.20210403408

• 纺织工程 • 上一篇    下一篇

棉/Ti3C2导电纱制备及其电容式压力传感器的性能

赵博宇, 李露红, 丛洪莲()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2021-04-12 修回日期:2022-04-13 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 丛洪莲
  • 作者简介:赵博宇(1996—),女,硕士生。主要研究方向为全成形针织产品设计与智能针织产品的开发。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(JUSRP22026);国家自然科学基金项目(11972172)

Preparation of cotton/Ti3C2 conductive yarn and performance of pressure capacitance sensor

ZHAO Boyu, LI Luhong, CONG Honglian()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-04-12 Revised:2022-04-13 Published:2022-07-15 Online:2022-07-29
  • Contact: CONG Honglian

摘要:

为了探究类石墨烯二维结构材料(MXene)与天然纤维的结合效果,及其所得导电纱线在柔性电容式传感器中的应用情况,以一种新型二维过渡金属碳化物Ti3C2为导电材料、以棉纱为基体纤维,实现了导电纱线的连续化制备;然后以此导电纱线为电极、以横编间隔织物为介电层,设计了一款电容式压力传感器。研究了处理时间对纱线微观形貌、结合效果以及导电性能的影响;分析了该压力传感器的力学性能与电容特性。实验结果表明:随着处理时间的延长,Ti3C2材料与棉纱复合得到的纱线电导率可达0.872 S/cm;制备的传感器压缩回复性好、电容特性显著,灵敏度最高达到0.028 kPa-1,能在150 ms内对压力快速响应,200次压缩循环中展现了良好的耐久性与稳定性。

关键词: 二维过渡金属碳化物, 导电纱, 横编间隔织物, 电容式传感器, 柔性传感器

Abstract:

The paper aims to explore the combination effect of two-dimensional transition metal carbide/nitride(MXene) and natural fibers so as to devise capacitive flexible sensing fabric with a simplified preparation process by knitting. In the experiment, a new two-dimensional transition metal carbide Ti3C2 was used as the conductive material, and cotton yarn as matrix fiber to achieve the continuous preparation of conductive yarns. A cross structure capacitive pressure sensor was designed with a flat-knitting spacer fabric as dielectric layer and conductive yarns as electrodes. The effects of treatment time on the micro morphology, bonding effect and electrical conductivity of the yarns were studied, and the mechanical properties and capacitance characteristics of the pressure sensor were analyzed. The experimental results show that the conductivity of the composite yarn of Ti3C2 material and cotton yarn reach 0.872 S/cm. The prepared sensor has good compression recovery, and remarkable capacitance characteristics. The highest sensitivity is 0.028 kPa-1, the response time is less than 150 ms, demonstrating durability and stability of the sensor after 200 compression cycles.

Key words: two-dimensional transition metal carbide, conductive yarn, flat-knitted spacer fabric, capacitive sensor, flexible sensor

中图分类号: 

  • TS184.1

图1

复合导电纱线制备工艺流程图"

图2

间隔结构编织图"

图3

交叉式电容结构图"

图4

电容式传感器压缩测试原理图"

图5

棉纱与导电纱线的SEM图(×1 000)"

图6

处理时间对导电纱线质量增加率影响"

图7

Ti3C2、棉纱及Ti3C2-CY导电纱线的傅里叶红外光谱图"

图8

Ti3C2、棉纱及Ti3C2-CY导电纱线的XRD图"

图9

处理时间对导电纱线电阻的影响"

图10

洗涤后导电纱线电导率保留率"

图11

不同应变下织物压缩-回复性能"

图12

200次循环压力下织物压缩-回复性能"

图13

应力-电容变化特性"

图14

压力电容传感器的响应时间"

图15

循环压力下传感器的电容特性"

[1] 王栋, 卿星, 蒋海青, 等. 纤维材料与可穿戴技术的融合与创新[J]. 纺织学报, 2018, 39(5): 150-154.
WANG Dong, QING Xing, JIANG Haiqing, et al. Integration and innovation of fiber materials and wearable technology[J]. Journal of Textile Research, 2018, 39(5): 150-154.
[2] LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C, 2018, 6(9): 2258-2269.
doi: 10.1039/C7TC04959E
[3] 田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5): 170-176.
TIAN Mingwei, LI Zengqing, LU Yunjing, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5): 170-176.
[4] 杨晨啸, 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(5): 160-169.
YANG Chenxiao, LI Li. Integration of soft intelligent textile and functional fiber[J]. Journal of Textile Research, 2018, 39(5): 160-169.
[5] ZHANG X, XUE M, YANG X, et al. Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil[J]. RSC Advances, 2014, 5(4): 56-63.
[6] 张建峰, 曹惠杨, 王红兵. 新型二维材料 MXene 的研究进展[J]. 无机材料学报, 2017, 32(6): 561-570.
ZHANG Jianfeng, CAO Huiyang, WANG Hongbing. Research progress of novel two-dimensional material MXene[J]. Journal of Inorganic Materials, 2017, 32(6): 561-570.
doi: 10.15541/jim20160479
[7] CHEN L, LIU Y, ZHAO Y, et al. Graphene-based fibers for supercapacitor applications[J]. Nanotechnology, 2016, 27: 1-19.
[8] UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019, 29(45): 1-13.
[9] 张恒宇, 张宪胜, 肖红, 等. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(3): 182-187.
ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, et al. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing[J]. Journal of Textile Research, 2020, 41(3): 182-187.
doi: 10.1177/004051757104100216
[10] HU M M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects[J]. Chemical Society Reviews, 2020, 49(18): 6666-6693.
doi: 10.1039/D0CS00175A
[11] VAGHASIYA J V, MAYORGA-MARTINEZ C C, VYSKOCIL J, et al. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-phase WS2 nanosheets[J]. Advanced Functional Materials, 2020, 30(39): 1-10.
[12] 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
DANG Alei, FANG Chenglin, ZHAO Zhao, et al. Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48(4): 1-14.
[13] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 2020, 30(12): 1-11.
[14] 杨以娜, 王冉冉, 孙静. MXenes在柔性力敏传感器中的应用研究进展[J]. 无机材料学报, 2020, 35(1): 8-18.
YANG Yina, WANG Ranran, SUN Jing. MXenes in flexible force sensitive sensors: a review[J]. Journal of Inorganic Materials, 2020, 35(1): 8-18.
[15] PARK T H, YU S, KOO M, et al. Shape-adaptable 2D titanium carbide (MXene) heater[J]. ACS Nano, 2019, 13(6): 6835-6844.
doi: 10.1021/acsnano.9b01602
[16] ZHAO B Y, CONG H L, DONG Z J. Highly stretchable and sensitive strain sensor based on Ti3C2-coated electrospinning TPU film for human motion detection[J]. Smart Materials and Structures, 2021, 30(9): 1-9.
[17] 李一飞, 郑敏, 常朱宁子, 等. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(6): 120-127.
LI Yifei, ZHENG Min, CHANG Zhuningzi, et al. Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis[J]. Journal of Textile Research, 2021, 42(6): 120-127.
[18] 张浩, 刘影. 基于FTIR与XRD的改性脱硫灰取代部分炭黑制备复合橡胶的补强机理研究[J]. 光谱学与光谱分析, 2019 (7): 2067-2072.
ZHANG Hao, LIU Ying. Study on reinforcement mechanism of composite rubber using modified desulfurization ash replacing partial carbon black by FTIR and XRD[J]. Spectroscopy and Spectral Analysis, 2019 (7): 2067-2072.
[19] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 209.
YU Weidong. Textile materials[M]. Beijing: China Textile & Apparel Press, 2006: 209.
[20] 洪剑寒, 潘志娟, 张小英, 等. 应用原位聚合法的PTT/毛/聚苯胺复合导电纱制备与性能[J]. 纺织学报, 2014, 35(10): 30-35.
HONG Jianhan, PAN Zhijuan, ZHANG Xiaoying, et al. Preparation and properties of PTT/wool/PANI composite conductive yarns based on in-situ polymerization[J]. Journal of Textile Research, 2014, 35(10): 30-35.
[21] ASAYESH A, AMINI M. The effect of fabric structure on the compression behavior of weft-knitted spacer fabrics for cushioning applications[J]. Journal of The Textile Institute, 2020, 112 (10): 1568-1579.
doi: 10.1080/00405000.2020.1829330
[1] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[2] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
[3] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[4] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[5] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[7] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[8] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[9] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[10] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[11] 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包覆氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(03): 45-50.
[12] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[13] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[14] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[15] 田明伟 李增庆 卢韵静 朱士凤 张宪胜 曲丽君. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(05): 170-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .