纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 55-59.doi: 10.13475/j.fzxb.20210403805

• 纺织工程 • 上一篇    下一篇

基于平面镜成像的纱线条干三维合成校准方法

马运娇, 王蕾(), 潘如如, 高卫东   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2021-04-13 修回日期:2022-04-08 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 王蕾
  • 作者简介:马运娇(1997—),女,硕士生。主要研究方向为纺织品图像处理技术。
  • 基金资助:
    国家自然科学基金项目(61802152);江苏省自然科学基金项目(BK20180602);中国纺织工业联合会应用基础研究计划项目(J202109)

Calibration method of three-dimensional yarn evenness based on mirrored image

MA Yunjiao, WANG Lei(), PAN Ruru, GAO Weidong   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-04-13 Revised:2022-04-08 Published:2022-07-15 Online:2022-07-29
  • Contact: WANG Lei

摘要:

针对二维图像纱线条干均匀度检测存在信息缺失、纱线条干三维合成准确度不高等问题,在平面镜成像的三维检测系统基础上提出一种纱线条干三维合成校准方法。选用4种不同粗细的纯棉集聚纺纱线,用相机在一幅图像中采集各个纱线的多视角图像,分别用校准方法对xoz平面和xoy平面校准,再进行二值化、形态学开运算处理,得到清晰的纱线条干二值图像,根据平面镜成像系统几何关系合成纱线条干三维模型,计算纱线条干各截面上像素点个数及其变异系数,与Uster TESTER 5测得的二维直径及纱线二维直径CV值对比评价纱线条干建模精度。结果表明,三维模型纱线各截面像素点个数与二维直径相关系数在0.987以上,条干均匀度CV值与Uster法结果的极差在2.36 %以内,证明校准方法可行。

关键词: 纱线条干, 三维模型, 校准方法, 平面镜成像, 图像处理

Abstract:

Aiming at the lack of information in yarn detection from two-dimensional image and at the low accuracy of three-dimensional (3-D) yarn evenness, a calibration method for 3-D yarn evenness based on mirrored image was proposed. Four types of compact cotton yarn with different thickness were selected, and the multi-view images of each yarn were collected in one image by a camera. The collected images were calibrated on the xoz plane and xoy plane, while binarization and morphological opening were carried out respectively to obtain clear binary image of yarn evenness. According to the geometric relationship of the mirror imaging system, the 3-D model of yarn was created, and the number and CV value of white dots on each cross section of yarn were calculated. The modeling accuracy of yarn was evaluated by comparing with the yarn diameter and CV value of yarn diameter experimentally measured by Uster TESTER 5. The results show that the correlation coefficient between the number of pixels in each section of the 3-D yarn model and the diameter is more than 0.987, and the difference of CV value between the proposed method in this research and that from Uster testing is less than 2.36%, which proves the feasibility of the calibration method.

Key words: yarn evenness, three-dimensional model, calibration method, mirrored image, image processing

中图分类号: 

  • TS101.9

图1

成像系统俯视图"

图2

11.7 tex纯棉集聚纺纱线的多视角图像"

图3

校准物的多视角图像"

图4

xoy平面几何关系示意图"

图5

9.7 tex纯棉集聚纺纱线的图像"

表1

Scaling ratio in xoz plane x-direction倍"

图像编号 人工测量法 自动测量法
V1 1.64 1.63
V2 2.00 1.91
V3 1.92 1.86
V4 1.63 1.61
R 1.00 1.00

表2

纱线直径及三维模型中各截面像素点个数"

样品编号 测量方法 像素点个数/像素 直径/mm
1 人工 2 029.85
自动 1 997.43
Uster 0.14
2 人工 2 153.01
自动 2 102.76
Uster 0.15
3 人工 2 716.32
自动 2 685.55
Uster 0.17
4 人工 3 465.35
自动 3 446.24
Uster 0.20

表3

纱线条干均匀度CV值"

样品编号 测量方法 CV值/% 与Uster极差/%
1 人工 12.23 0.93
自动 11.92 0.62
Uster 11.30
2 人工 14.45 2.36
自动 14.22 2.13
Uster 12.09
3 人工 12.85 1.44
自动 12.61 1.20
Uster 11.41
4 人工 16.48 1.12
自动 16.24 0.88
Uster 15.36
[1] 任志博. 条干均匀度测试仪的发展及其存在的问题研究[J]. 中国纤检, 2010(10):78-80.
REN Zhibo. Research on the development and existing problems of dry evenness tester[J]. China Fiber Inspection, 2010 (10): 78-80.
[2] 迟开龙, 潘如如, 刘基宏, 等. 基于数字图像处理的纱线条干均匀度检测初探[J]. 纺织学报, 2012, 33(12):19-24.
CHI Kailong, PAN Ruru, LIU Jihong, et al. Primary discussion on detection of yarn evenness based on digital image processing[J]. Journal of Textile Research, 2012, 33 (12): 19-24.
[3] 章国红, 辛斌杰, 张瑞. 基于图像分析技术的纱线黑板条干检测[J]. 棉纺织技术. 2016, 44(12):19-24.
ZHANG Guohong, XIN Binjie, ZHANG Rui. Detection of yarn blackboard evenness based on image analysis rechnology[J]. Cotton Textile Technology, 2016, 44(12):19-24.
[4] 张缓缓, 赵妍, 景军锋, 等. 基于亚像素边缘检测的纱线条干均匀度测量[J]. 纺织学报, 2020, 41(5):45-57.
ZHANG Huanhuan, ZHAO Yan, JING Junfeng, et al. Yarn evenness measurement based on sub-pixel edge detection[J]. Journal of Textile Research, 2020, 41 (5): 45-57.
[5] 李变变, 李忠健, 潘如如, 等. 纱线条干均匀性序列图像测量方法[J]. 纺织学报, 2016, 37(11):26-31.
LI Bianbian, LI Zhongjian, PAN Ruru, et al. Measurement of yarn evenness using sequence images[J]. Journal of Textile Research, 2016, 37(11):26-31.
[6] 李忠健. 基于图像技术的纱线条干均匀度测量及直观评价方法研究[D]. 无锡: 江南大学, 2019:17-18.
LI Zhongjian. Research on the measurement and visual evaluation of yarn evenness based on image technology[D]. Wuxi: Jiangnan University, 2019:17-18.
[7] 李忠健, 董龙, 倪海云, 等. 基于散焦信息的纱线毛羽三维测量与验证[J]. 丝绸, 2021, 58(6):41-47.
LI Zhongjian, DONG Long, NI Haiyun, et al. Three-dimensional measurement and verification of yarn hairiness based on defocus information[J]. Journal of Silk, 2021, 58(6):41-47.
[8] WANG Lei, XU Bugao, GAO Weidong, et al. Multi-perspective measurement of yarn hairiness using mirrored images[J]. Textile Research Journal, 2016, 86(6):621-629.
[9] WANG Wendi, XIN Binjie, DENG Na, et al. Objective evaluation on yarn hairiness detection based on multi-view imaging and processing method[J]. Measurement, 2019.DOI: 10.1016/j.measurement.2019.106905.
doi: 10.1016/j.measurement.2019.106905.
[10] LI Guanzhi, et al. AKANKWASA Nicholus Tayari, ZHAO Qiang, A novel system for yarn cross-section analysis based on dual orthogonal CCD sensors[J]. Journal of Natural Fibers, 2019, 16(1): 114-125.
doi: 10.1080/15440478.2017.1409151
[11] WANG Lei, XU Bugao, GAO Weidong. Three-dimensional measurement of yarn hairiness via multiperspective images[J]. Optical Engineering, 2018.DOI: 10.1117/1.OE.57.2.025103.
doi: 10.1117/1.OE.57.2.025103.
[12] 李久芳. 基于标准棋盘格的图像校准方法[J]. 电子工业专用设备, 2010, 39(11):4-6.
LI Jiufang. Image calibration method based on standard checkerboard[J]. Equipment for Electronic Products Manufacturing, 2010, 39 (11): 4-6.
[13] 陆奕辰, 王蕾, 唐千惠, 等. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(8):144-149.
LU Yichen, WANG Lei, TANG Qianhui, et al. Detection and evaluation on yarn hairiness of blackboard with image processing[J]. Journal of Textile Research, 2018, 39(8):144-149.
[1] 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169.
[2] 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159.
[3] 熊晶晶, 杨雪, 苏静, 王鸿博. 基于图像技术的织物导湿性能测试方法[J]. 纺织学报, 2021, 42(12): 70-75.
[4] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[5] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[6] 夏旭文, 孟朔, 潘如如, 高卫东. 基于改进帧间差分法的经纱撞筘拥纱在线检测[J]. 纺织学报, 2021, 42(06): 91-96.
[7] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[8] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[9] 唐千惠, 王蕾, 高卫东. 基于图像处理的织物保形性检测[J]. 纺织学报, 2021, 42(03): 89-94.
[10] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[11] 张缓缓, 赵妍, 景军锋, 李鹏飞. 基于亚像素边缘检测的纱线条干均匀度测量[J]. 纺织学报, 2020, 41(05): 45-49.
[12] 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43.
[13] 杨恩惠, 邱华, 代文杰. 基于六边形网格结构的针织物三维建模[J]. 纺织学报, 2019, 40(11): 69-74.
[14] 王旭, 杜增锋, 王翠娥, 倪庆清, 刘新华. 贯穿正交机织物结构的参数化三维建模[J]. 纺织学报, 2019, 40(11): 57-63.
[15] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .