纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 75-80.doi: 10.13475/j.fzxb.20210805206

• 纺织工程 • 上一篇    下一篇

基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析

竺铝涛1,2, 郝丽1, 沈伟2, 祝成炎1()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.绍兴宝旌复合材料有限公司, 浙江 绍兴 312000
  • 收稿日期:2021-08-11 修回日期:2022-03-22 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 祝成炎
  • 作者简介:竺铝涛(1983—),男,讲师,博士。主要研究方向为产业用纺织品和纺织结构复合材料。
  • 基金资助:
    浙江省自然科学基金项目(LGG21E050025)

Analysis of quasi-brittle fracture performance of glass fiber composites based on boundary effect model

ZHU Lütao1,2, HAO Li1, SHEN Wei2, ZHU Chengyan1()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2021-08-11 Revised:2022-03-22 Published:2022-07-15 Online:2022-07-29
  • Contact: ZHU Chengyan

摘要:

为解决玻璃纤维复合材料的准脆性断裂问题,基于边界效应模型,引入玻璃纤维复合材料的单层预浸料厚度作为特征复合材料单元建立解析表达式,在三点弯曲条件下测得带有浅表面刮痕试样的峰值载荷,计算得到准脆性断裂参数:抗拉强度和断裂韧性。经正态分布分析后得到断裂参数均值:抗拉强度为169.48 MPa,断裂韧性为20.34 MPa·m1/2,在具有95%的可靠性范围内几乎覆盖了全部试验离散点。将试样参数拟合在一起,得到断裂载荷与等效面积的线性拟合曲线,结果表明:使用正态分布法和线性拟合法得到的抗拉强度吻合度较高,二者之间的误差仅为4.95%。

关键词: 玻璃纤维复合材料, 边界效应, 抗拉强度, 断裂韧性, 准脆性断裂性能

Abstract:

In order to solve the quasi-brittle fracture problem of glass fiber composites, the thickness of the single-layer prepreg of the glass fiber composite materials was introduced, based on the boundary effect model, as a microstructure parameter to establish an analytical equation. The quasi-brittle fracture parameters such as tensile strength and fracture toughness were calculated based on the peak load of the specimen, and the mean value of fracture parameters was obtained after normal distribution analysis. The results indicate that the tensile strength is 169.48 MPa and the fracture toughness is 20.34 MPa·m1/2, covering almost all discrete points within the reliability range of 95%. Fitting the parameters of the specimen together, the linear fitting curve between the fracture load and the equivalent area was obtained with the error being only 4.95%.

Key words: glass fiber composites, boundary effect, tensile strength, fracture toughness, quasi-brittle fracture performance

中图分类号: 

  • TB332

图1

由BEM引起的材料断裂破坏模式"

图2

玻璃纤维复合材料三点弯曲示意图"

表1

不同厚度B和缝高比α的10组试样"

编号 组别 高度W/mm 厚度B/mm 跨度S/mm 跨高比(S/W) 初始划痕a0/mm 缝高比α
1# S-3-4-0 12 3 48 4 0 0
2# S-3-4-0.041 67 12 3 48 4 0.5 0.041 67
3# S-3-4-0.1 12 3 48 4 1.2 0.1
4# S-3-4-0.2 12 3 48 4 2.4 0.2
5# S-4-4-0 12 4 48 4 0 0
6# S-4-4-0.041 67 12 4 48 4 0.5 0.041 67
7# S-4-4-0.2 12 4 48 4 2.4 0.2
8# S-5.5-4-0 12 5.5 48 4 0 0
9# S-5.5-4-0.041 67 12 5.5 48 4 0.5 0.041 67
10# S-5.5-4-0.2 12 5.5 48 4 2.4 0.2

图3

典型试样的载荷-位移图及断裂过程模拟图"

表2

断裂参数的统计分析"

编号 a0/
mm
抗拉强度/MPa 断裂韧性/(MPa·m1/2)
最大值 最小值 最大值 最小值
1# 0 201.39 186.84 24.17 22.42
2# 0.5 167.19 131.61 20.06 15.80
3# 1.2 217.20 184.05 26.06 22.09
4# 2.4 221.40 116.91 26.57 14.03
5# 0 158.11 138.32 18.97 16.60
6# 0.5 155.11 137.57 18.61 16.51
7# 2.4 217.96 209.95 25.85 21.93
8# 0 148.51 165.85 21.62 17.82
9# 0.5 163.27 138.54 16.62 19.60
10# 2.4 184.43 152.90 22.14 17.62

图4

全部玻璃纤维复合材料试样的结果分析"

表3

不同缝高比的玻璃纤维复合材料ft分析"

编号 最小值 最大值 中值 平均值
1# 186.84 201.39 189.04 192.83
2# 131.61 167.19 149.53 152.47
3# 184.05 217.20 190.28 199.26
4# 116.91 221.40 171.55 170.35

表4

不同缝高比的玻璃纤维复合材料KIC分析"

编号 最小值 最大值 中值 平均值
1# 22.42 24.17 22.68 23.14
2# 15.80 20.06 17.94 18.30
3# 22.09 26.06 22.83 23.91
4# 14.03 26.57 20.59 20.44

图5

常规尺寸玻璃纤维复合材料的结果分析"

[1] 蔡冯杰, 祝成炎, 田伟, 等. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
CAI Fengjie, ZHU Chengyan, TIAN Wei, et al. Glass fiber reinforced polylactic acid composites based on 3D printing technology[J]. Journal of Textile Research, 2017, 38(10): 13-18.
[2] 王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2): 252-259.
WANG Cong, ZHU Lütao, GAO Xiaoping. Mechanical properties of 3D orthogonal glass fiber woven fabric reinforced epoxy resin composites with nano clay modification[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 252-259.
[3] BAŽANT. Scaling of quasibrittle fracture: asymptotic analysis[J]. International Journal of Fracture, 1997, 83(1): 19-40.
doi: 10.1023/A:1007387823522
[4] HU Xiaozhi, FOLKER Wittmann. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2): 209-221.
doi: 10.1016/S0013-7944(99)00123-X
[5] YUAN B, HU Y, HU X. Critical bending load of CFRP panel with shallow surface scratch determined by a tensile strength model[J]. Composites Science and Technology, 2020.DOI: 10.1016/j.compscitech.2020.108072.
doi: 10.1016/j.compscitech.2020.108072.
[6] 张冬梅. 聚乳酸/玻璃纤维复合材料性能及发泡行为研究[D]. 济南: 山东大学, 2017:49-52.
ZHANG Dongmei. Study on properties and foam behaviors of polylactic acid/glass fiber composites[D]. Jinan: Shandong University, 2017:49-52.
[7] 南洪尧, 李岳, 李志刚. 玻璃纤维增强环氧树脂力学性能研究[J] .湘潭大学自然科学学报, 2018, 40(3):46-50.
NAN Hongyao, LI Yue, LI Zhigang. A study on the mechanical properties of glass fiber/epoxy resin composites[J]. Natural Science Journal of Xiangtan University, 2018, 40(3):46-50.
[8] HU Xiaozhi. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, 2002, 69(5): 555-564.
doi: 10.1016/S0013-7944(01)00102-3
[9] 徐平, 胡晓智, 张敏霞, 等. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10): 75-84.
XU Ping, HU Xiaozhi, ZHANG Minxia, et al. Quasi-brittle fracture model and application on concrete considering aggregate volume content effect[J]. Engineering Mechanics, 2018, 35(10): 75-84.
[10] 杜敏, 武亮, 张建铭. 不同初始缝高比的混凝土断裂试验及边界效应分析[J]. 水利水电技术, 2019, 50(11): 141-148.
DU Min, WU Liang Min, ZHANG Jianming. Analysis on fracture experiment and boundary effect of concrete with different initial crack-depth ratios[J]. Water Resources and Hydropower Engineering, 2019, 50(11): 141-148.
[11] LIU Wen, YU Ying, HU Xiaozhi, et al. Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model[J]. Composite Structures, 2019, 220: 347-354.
doi: 10.1016/j.compstruct.2019.04.008
[12] ZHAO Yanhua, LIU Yang, XU Bohan. Effect of coarse aggregate size distribution on fracture toughness of concrete based on boundary effect model[J]. Theoretical and Applied Fracture Mechanics, 2021.DOI: 10.1016/j.tafmec.2021.102970.
doi: 10.1016/j.tafmec.2021.102970.
[13] WANG J, WU Q, GUAN J, et al. Numerical simulation on size effect of fracture toughness of concrete based on mesomechanics[J]. Materials, 2020, 13(6): 1306-1370.
doi: 10.3390/ma13061306
[14] HU X, GUAN J, WANG Y, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175: 146-167.
doi: 10.1016/j.engfracmech.2017.02.005
[15] ZHANG C, HU X, SERCOMBE T, et al. Prediction of ceramic fracture with normal distribution pertinent to grain size[J]. Acta Materialia, 2018, 145: 41-48.
doi: 10.1016/j.actamat.2017.11.041
[16] WISNOM. The relationship between tensile and flexural strength of unidirectional composites[J]. Journal of Composite Materials, 1992, 26(8):1173-1180.
doi: 10.1177/002199839202600805
[1] 焦亚男;李晓久;董孚允. 三维缝合复合材料性能研究[J]. 纺织学报, 2002, 23(02): 16-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .