纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 104-110.doi: 10.13475/j.fzxb.20210603407

• 染整与化学品 • 上一篇    下一篇

抗菌和防细菌黏附整理剂在棉织物改性中的应用

杨尧, 程伟, 余圆圆(), 王强, 王平, 周曼   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2021-06-10 修回日期:2022-04-14 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 余圆圆
  • 作者简介:杨尧(1995—),男,硕士生。主要研究方向为纺织品功能改性。
  • 基金资助:
    国家自然科学基金项目(51603087);中国博士后科学基金资助项目(2017M611697)

Application of antibacterial and antibacterial adhesion finishing agents in cotton fabric modification

YANG Yao, CHENG Wei, YU Yuanyuan(), WANG Qiang, WANG Ping, ZHOU Man   

  1. Key Laboratory of Eco-Textiles (Jiangnan University ), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-06-10 Revised:2022-04-14 Published:2022-07-15 Online:2022-07-29
  • Contact: YU Yuanyuan

摘要:

为制备同时具有抗菌和防细菌黏附功能的棉织物,采用光控葡萄糖氧化酶体系引发自由基聚合反应,分别以[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵(SBMA)或甲基丙烯酸二甲氨基乙酯(DMAEMA)与3-(异丁烯酰氧)丙基三甲氧基硅烷(TMSPMA)聚合,得到防细菌黏附聚合物P(TMSPMA-co-SBMA)和抗菌聚合物P(TMSPMA-co-DMAEMA)。然后,通过浸渍-焙烘法将2种聚合物单独或共同整理到棉织物上。测试了整理织物的化学结构、表面元素含量、抗菌性能、防死/活细菌黏附性能等。结果表明:2种聚合物成功整理到棉织物上;抗菌整理棉织物抑菌率达到99.9%,表面较多死细菌;防细菌黏附整理棉织物具有85%以上抑菌率,表面黏附的死/活细菌均较少;抗菌防细菌黏附棉织物抑菌率与防活细菌黏附率达到98%和81%以上,且织物表面可防止死细菌黏附。

关键词: 葡萄糖氧化酶, 酶促聚合, 抗菌聚合物, 防细菌黏附聚合物, 棉织物, 抗菌纺织品

Abstract:

In order to prepare cotton fabrics with both antibacterial and antibacterial adhesion functions, free radical polymerization of [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) (SBMA) or 2-(dimethylamino) ethyl methacrylate (DMAEMA) with 3-(trimethoxysilyl)propyl methacry-late (TMSPMA) was produced utilizing a light-controlled glucose oxidase system to obtain antibacterial adhesive polymer P(TMSPMA-co-SBMA) or antibacterial polymer P(TMSPMA-co-DMAEMA). The two polymers were individually or jointly applied to the cotton fabric using the impregnation-baking method. The chemical structure, element composition, antibacterial properties and anti-dead/live bacteria adhesion properties of the finished fabrics were measured. The results show successful adhesion of two polymers on the cotton fabric. The antibacterial agent finished cotton fabric has a bacteriostatic rate of 99.9% with many dead bacteria on the surface, and the antibacterial adhesion agent finished cotton fabric shows a bacteriostatic rate of more than 85% but with less dead/live bacteria adhering to the fabric surface. The antibacterial and antibacterial adhesion rates of cotton fabrics exceed 98% and 81%, and the surface of the fabric can prevent dead bacteria from adhering.

Key words: glucose oxidase, enzymatic polymerization, antibacterial agent, antibacterial adhesive agent, cotton fabric, antibacterial textiles

中图分类号: 

  • TS195.5

图1

未改性棉织物和不同整理棉织物的红外光谱"

表1

不同棉织物表面各元素含量占比"

样品 质量分数/%
C N O Si S
未改性棉织物 46.41 0.36 51.98 0.04 1.21
4# 46.15 2.33 48.11 0.60 2.82
8# 45.82 0.54 52.47 0.39 0.79
10# 45.58 2.08 50.14 0.56 1.64

图2

不同棉织物的SEM照片(×3 000)"

图3

不同棉织物对金黄色葡萄球菌和大肠杆菌抑菌圈测试图 注:3#、4#为防细菌黏附整理棉织物;5#,6#,7#,8#为抗菌整理棉织物。"

表2

不同改性织物对金黄色葡萄球菌和大肠杆菌抑菌率"

样品类别 编号 抑菌率/%
对金黄色葡萄球菌 对大肠杆菌
未改性棉织物 0 0
P(TMSPMA-co-SBMA)
整理棉织物
3# 88.33 85.00
4# 87.30 89.75
P(TMSPMA-co-DMAEMA)
整理棉织物
5# 95.07 99.56
6# 99.98 99.79
7# 99.94 99.97
8# 99.99 99.90

表3

不同棉织物对金黄色葡萄球菌和大肠杆菌的防活细菌黏附率"

样品类别 编号 防活细菌黏附率/%
对金黄色葡萄球菌 对大肠杆菌
未改性棉织物 0 0
P(TMSPMA-co-DMAEMA)
整理棉织物
7# 96.06 94.87
8# 98.03 91.81
P(TMSPMA-co-SBMA)
整理棉织物
1# 80.31 79.26
2# 94.48 65.08
3# 91.34 94.39
4# 97.63 93.36

表4

不同棉织物对金黄色葡萄球菌和大肠杆菌的防活菌黏附率和抑菌率"

样品种类 防活细菌黏附率/% 抑菌率/%
对金黄色葡萄球菌 对大肠杆菌 对金黄色葡萄球菌 对大肠杆菌
未改性棉织物 0 0 0 0
9# 33.67 44.67 99.78 99.92
10# 41.70 68.18 99.15 99.70
11# 81.90 81.06 98.72 99.60

图4

不同织物表面金黄色葡萄球菌和大肠杆菌荧光染色图"

[1] 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(3):188-196.
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond[J]. Journal of Textile Research, 2020, 41(3):188-196.
[2] LIN J, CHEN X Y, CHEN C Y, et al. Durably antibacterial and bacterially anti-adhesive cotton fabrics coated by cationic fluorinated polymers[J]. ACS Applied Materials & Interfaces, 2018, 10(7):6124-6136.
[3] LI Y X, FANG X, WANG Y, et al. Highly transparent and water-enabled healable antifogging and frost-resisting films based on poly(vinyl alcohol)-nafion complexes[J]. Chemistry of Materials, 2016, 28(19):6975-6984.
doi: 10.1021/acs.chemmater.6b02684
[4] 韦婷. 具有可控杀菌-释放细菌功能的智能抗菌表面的构建[D]. 苏州: 苏州大学, 2019:2-23.
WEI Ting. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities[D]. Suzhou: Soochow University, 2019:2-23.
[5] ZHU M M, FANG Y, CHEN Y C, et al. Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers[J]. Journal of Colloid and Interface Science, 2021, 584:225-235.
doi: 10.1016/j.jcis.2020.09.041
[6] GEORGOUVELAS D, JALVO B, VALENCIAL L, et al. Residual Lignin and zwitterionic polymer grafts on cellulose nanocrystals for antifouling and antibacterial applications[J]. ACS Applied Polymer Materials, 2020, 2(8):3060-3071.
doi: 10.1021/acsapm.0c00212
[7] XU G, NEOH K G, KANG E T, et al. Switchable antimicrobial and antifouling coatings from tannic acid-scaffolded binary polymer brushes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6):2586-2595.
[8] MA Y, LI J Y, SI Y, et al. Rechargeable antibacterial N-halamine films with antifouling function for food packaging applications[J]. ACS Applied Materials & Interfaces, 2019, 11(19):17814-17822.
[9] LIN X J, JAIN P, WU K, et al. Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers[J]. Langmuir, 2018, 35(5):1544-1551.
doi: 10.1021/acs.langmuir.8b02540
[10] YAN S J, LUAN S F, SHI H C, et al. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent[J]. Biomacromolecules, 2016, 17(5):1696-1704.
doi: 10.1021/acs.biomac.6b00115
[11] ZHOU F F, LI R Y, WANG X, et al. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase[J]. Angewandte Chemie, 2019, 131(28):9579-9584.
doi: 10.1002/ange.201904413
[12] SUN H, CHEN X L, HAN X, et al. Dual thermoresponsive aggregation of schizophrenic PDMAEMA-b-PSBMA copolymer with an unrepeatable pH response and a recycled CO2/N2 response[J]. Langmuir, 2017, 33(10):2646-2654.
doi: 10.1021/acs.langmuir.7b00065
[13] WANG B L, YE Z, TANG Y H, et al. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization[J]. International Journal of Nanomedicine, 2017, 12(1):111-125.
doi: 10.2147/IJN.S107472
[14] 高思梦, 王鸿博, 杜金梅, 等. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(2):89-94.
GAO Simeng, WANG Hongbo, DU Jinmei, et al. Synthesis of polybetaine antibacterial agent and its applications in cotton textiles finishing[J]. Journal of Textile Research, 2020, 41(2):89-94.
[1] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[2] 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103.
[3] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114.
[4] 王宗乾, 程绿竹, 金鲜花, 夏丽萍. 基于紫外光谱法的纯棉织物中氯菊酯含量检测方法[J]. 纺织学报, 2022, 43(06): 127-132.
[5] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[6] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[7] 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89.
[8] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[9] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[10] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[11] 鲜永芳, 王红梅, 吴明华, 王莉莉. 少/无氨氮助剂在活性染料深色印花中的应用[J]. 纺织学报, 2021, 42(11): 89-96.
[12] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[13] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[14] 程佩, 傅佳佳, 王蕾, 张建祥, 张凯, 高卫东. 预处理对棉织物免烫整理效果的影响[J]. 纺织学报, 2021, 42(09): 126-130.
[15] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .