纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 149-154.doi: 10.13475/j.fzxb.20210501606
LI Ruikai1,2, LI Ruichang3, ZHU Lin2, LIU Xiangyang4()
摘要:
针对Ag/AgCl凝胶电极不适合长期使用、单导联可穿戴心电监测设备导联数较少的现状,设计了一款基于石墨烯织物电极的七导联可穿戴心电监测系统。该系统由棉/T400高弹心电衣、石墨烯织物电极、七导联心电采集终端及手机应用程序(APP)共4部分组成。对该系统连续工作时间、连续佩戴信号质量以及多使用场景等进行了测试和分析。结果表明:石墨烯织物电极连续佩戴7 d后心电信号信噪比仍达29.8 dB;该系统以250 mA·h容量锂电池在满电情况下连续使用可长达5 d,在静息、步行、慢跑等多种运动状态测试场景中,以及静息自汗的身体状况下,依然可采集到高质量的心电信号,为心电数据智能分析和医生的精确诊断提供有效信息,在心脏疾病的连续远程监护中具有重要应用价值。
中图分类号:
[1] | 胡盛寿. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. |
HU Shengshou. Report on cardiovascular health and diseases burden in china: an updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545. | |
[2] |
CHO H S, KOO S M, LEE J, et al. Heart monitoring garments using textile electrodes for healthcare applications[J]. Journal of Medical Systems, 2011, 35(2): 189-201.
doi: 10.1007/s10916-009-9356-8 |
[3] | 黄海诚, 汪丰. 可穿戴技术在医疗中的研究与应用[J]. 中国医疗设备, 2015, 30(1): 1-5. |
HUANG Haicheng, WANG Feng. Research and application of wearable technology in medical treatment[J]. China Medical Devices, 2015, 30(1): 1-5. | |
[4] |
SAGHIR N, AGGARWAL A, SONEJI N, et al. A comparison of manual electrocardiographic interval and waveform analysis in lead 1 of 12-lead ECG and Apple Watch ECG: a validation study[J]. Cardiovascular Digital Health Journal, 2020, 1(1): 30-36.
doi: 10.1016/j.cvdhj.2020.07.002 |
[5] |
杜欣, 曾伟杰, 李承炜, 等. 基于移动医疗的孕产妇健康监护系统[J]. 生物医学工程学杂志, 2016, 33(1): 2-7.
pmid: 27382731 |
DU Xin, ZENG Weijie, LI Chengwei, et al. A maternal health care system based on mobile health care[J]. Journal of Biomedical Engineering, 2016, 33(1): 2-7.
pmid: 27382731 |
|
[6] | YAZICIOGLU R F, TORFS T, PENDERS J, et al. Ultra-low-power wearable biopotential sensor nodes[C]// 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE, 2009: 3205-3208. |
[7] | 李严, 张元亭. 一种用于可穿戴式生理参数检测的集成电路[J]. 电子技术应用, 2016, 42(11): 18-21. |
LI Yan, ZHANG Yuanting. An integrated circuit for the wearable devices measuring physiological parameters[J]. Application of Electronic Technique, 2016, 42(11): 18-21. | |
[8] |
TADESSE G A, JAVED H, WELDEMARIAM K, et al. DeepMI: deep multi-lead ECG fusion for identifying myocardial infarction and its occurrence-time[J]. Artificial Intelligence in Medicine, 2021. DOI: 10.1016/j.artmed.2021.102192.
doi: 10.1016/j.artmed.2021.102192. |
[9] |
YANG T, GREGG R E, BABAEIZADEH S. Big data reveals insights for lead importance in ECG interpretation[J]. Journal of Electrocardiology, 2021, 69: 12-22.
doi: 10.1016/j.jelectrocard.2021.01.002 |
[10] | RANDAZZO V, FERRETTI J, PASERO E. ECG watch: a real time wireless wearable ECG[C]// 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Istanbul:IEEE, 2019: 1-6. |
[11] | LEE Y D, CHUNG W Y. Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring[J]. Sensors & Actuators B Chemical, 2009, 140(2): 390-395. |
[12] |
LI B M, MILLS A C, FLEWWELLIN T J, et al. Influence of armband form factors on wearable ECG monitoring performance[J]. IEEE Sensors Journal, 2021, 21(9): 11046-11060.
doi: 10.1109/JSEN.2021.3059997 |
[13] |
LOU C, LI R, LI Z, et al. Flexible graphene electrodes for prolonged dynamic ECG monitoring[J]. Sensors, 2016, 16(11): 1833-1844.
doi: 10.3390/s16111833 |
[14] | FAN M H, GUAN C, WANG L H, et al. Three-lead ECG detection system based on an analog front-end circuit ADS1293[C]// 2017 IEEE International Conference on Consumer Electronics. Taiwan: ICCE-China, 2017: 107-108. |
[15] |
CELIK N, MANIVANNAN N, STRUDWICUK A, et al. Graphene-enabled electrodes for electrocardiogram monitoring[J]. Nanomaterials, 2016, 6(9): 1-16.
doi: 10.3390/nano6010001 |
[16] |
GAO K, SHAO Z, XUE W, et al. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper[J]. Carbohydrate Polymers, 2013, 97(1): 243-251.
doi: 10.1016/j.carbpol.2013.03.067 |
[17] |
TUNG V C, ALLEN M J, YANG Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4(1): 25-29.
doi: 10.1038/nnano.2008.329 |
[18] | CHENG H, HU C, ZHAO Y, et al. Graphene fiber: a new material platform for unique applications[J]. NPG Asia Materials, 2014, 6(7): 113-125. |
[19] | 李承炜, 宁玉萍, 陈军, 等. 基于ADS1293的穿戴式心电检测装置设计与实现[J]. 电子技术应用, 2017, 43(9): 8-12. |
LI Chengwei, NING Yuping, CHEN Jun, et al. Design and implementation of a wearable ECG device based on ADS1293[J]. Application of Electronic Technique, 2017, 43(9): 8-12. | |
[20] | 何伶俐, 王宇峰, 祝元仲, 等. 基于ADS1293的便携式低功耗心电信号采集系统[J]. 电子科技, 2014, 27(7): 117-119. |
HE Lingli, WANG Yufeng, ZHU Yuanzhong, et al. Design of an acquisition system for portable and low-power ECG based on the ADS1293[J]. Electronic Science and Technology, 2014, 27(7): 117-119. | |
[21] | 曹然彬, 基于CC2541芯片的蓝牙数据采集系统的设计与实现[J]. 电子科学技术, 2017, 4(4): 12-15. |
CAO Ranbin. The design and implementation of the bluetooth data acquisition system based on CC2541 chip[J]. Electronic Science & Technology, 2017, 4(4): 12-15. | |
[22] | 冯伟东, 孙莹, 曲东超, 等. 信号的多分辨率分析在消噪中的应用[J]. 长春工业大学学报(自然科学版), 2007, 28(1): 101-104. |
FENG Weidong, SUN Ying, QU Dongchao, et al. The application of signal multi-resolution analysis in noise elimination[J]. Journal of Changchun University of Techonology (Natural Science Edition), 2007, 28(1): 101-104. | |
[23] | 熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1-7. |
XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1-7. | |
[24] | 陈远贵, 罗保钦, 曾庆宁. 基于一种新的小波阈值函数的心音信号去噪[J]. 计算机仿真, 2010, 27(11): 319-323. |
CHEN Yuangui, LUO Baoqin, ZENG Qingning. Heart sound signal de-noising based on a new wavelet threshold function[J]. Computer Simulation, 2010, 27(11): 319-323. | |
[25] | 曹鸯婷, 陈俊丽. 改进型阈值提取心电信号的R峰值[J]. 电子测量技术, 2015, 38(12): 107-110. |
CAO Yangting, CHEN Junli. Improved threshold extraction of R peak[J]. Electronic Measurement Technology, 2015, 38(12): 107-110. |
[1] | 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42. |
[2] | 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29. |
[3] | 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174. |
[4] | 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143. |
[5] | 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197. |
[6] | 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70. |
[7] | 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83. |
[8] | 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180. |
[9] | 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58. |
[10] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[11] | 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86. |
[12] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[13] | 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68. |
[14] | 陈慧, 王玺, 丁辛, 李乔. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020, 41(03): 118-123. |
[15] | 吴荣辉, 马丽芸, 张一帆, 刘向阳, 于伟东. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019, 40(12): 45-49. |
|