纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 207-216.doi: 10.13475/j.fzxb.20210308710
LI Chenfei1, LIU Yuanjun1,2,3(), ZHAO Xiaoming1,2,3
摘要:
为了全面了解生化防护服的各项性能要求,首先介绍了4种生化防护服的类别和透湿机制;其次列举了橡胶基防护材料、离子交换膜材料、消毒高分子材料和其他高分子复合材料等用于生化防护服主要材料的研究进展,重点展示了生化防护服的研究现状。然后总结了应用于生化防护服的新型技术,包括自修复技术和静电纺丝技术,为生化防护服的发展提供了新的思路。最后根据生化防护服的发展状况总结了当前面临的问题,并对未来的研究趋势做出展望。研究表明:尽管目前生化防护材料发展迅速,但其产业化仍面临诸多问题,现有的各类生化防护服优缺点明显,未来应侧重于防护范围和性能的扩大与提升,并使其向舒适化及智能化发展。
中图分类号:
[1] | 闵小豹, 潘志娟. 国内外医用防护服结构与功能的比较与分析[J]. 纺织学报, 2020, 41(8):172-178. |
MIN Xiaobao, PAN Zhijuan. Comparison and analysis of the structure and function of medical protective clothing at home and abroad[J]. Journal of Textile Research, 2020, 41(8):172-178. | |
[2] | 刘宝成, 赵晓明. 生化防护服的研究现状及发展趋势[J]. 成都纺织高等专科学校学报, 2016, 33(4):216-219. |
LIU Baocheng, ZHAO Xiaoming. Research status and development trend of biochemical protective clothing[J]. Journal of Chengdu Textile College, 2016, 33(4): 216-219. | |
[3] | 钟卫兵, 卿星, 王跃丹. 纳米技术在生化防护服中的应用及研究进展[J]. 山东纺织经济, 2016(1):32-34. |
ZHONG Weibing, QING Xing, WANG Yuedan. Applcation and research progress of nanotechnology in biochemical protective clothing[J]. Shandong Textile Economy, 2016(1):32-34. | |
[4] | 吕晖, 朱宏勇, 程昊. 生化防护服的发展概述[J]. 中国个体防护装备, 2014(3):19-21. |
LÜ Hui, ZHU Hongyong, CHENG Hao. Overview of the development of biochemical protective clothing[J]. China Personal Protective Equipment, 2014(3):19-21. | |
[5] | 王得印, 李小银, 黄强, 等. 国内外隔绝式皮肤防护装备的现状及发展趋势[J]. 中国个体防护装备, 2015(6):17-22. |
WANG Deyin, LI Xiaoyin, HUANG Qiang, et al. Current status and development trend of isolated skin protective equipment at home and abroad[J]. China Personal Protective Equipment, 2015(6):17-22. | |
[6] | 毕波. 消防员着隔绝式防护服时身体冷却方法[J]. 消防科学与技术, 2015, 34(7):938-941. |
BI Bo. The method of body cooling for firefighters wearing insulated protective clothing[J]. Fire Science and Technology, 2015, 34(7):938-941. | |
[7] | KHALIL E. A technical overview on protective clothing against chemical hazards[J]. AASCIT Journal of Chemistry, 2015, 2(3):67-76. |
[8] | 杨智联, 郁娟, 刘其霞, 等. 透气式生化防护服的应用现状及发展趋势[J]. 棉纺织技术, 2020, 48(6):1-7. |
YANG Zhilian, YU Juan, LIU Qixia, et al. Application status and development trend of breathable biochemical protective clothing[J]. Cotton Textile Technology, 2020, 48(6):1-7. | |
[9] | SEN S G H L. Protective textile materials based on electron-spun nanofibers[J]. Journal of Advanced Materials, 2002, 34(3):44-55. |
[10] | 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018, 32(17):3083-3089. |
ZHAO Xiaoming, LIU Baocheng. Development status and latest research progress of breathable anti-virus clothing[J]. Materials Guide, 2018, 32(17):3083-3089. | |
[11] |
SHI S, HAN Y, HU J. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth[J]. Progress in Organic Coatings, 2019. DOI: 10.1016/j.porgcoat.2019.105303.
doi: 10.1016/j.porgcoat.2019.105303. |
[12] |
POKORNY J, FISER J, FOJTLIN M, et al. Verification of Fiala-based human thermophysiological model and its application to protective clothing under high metabolic rates[J]. Building and Environment, 2017, 126:13-26.
doi: 10.1016/j.buildenv.2017.08.017 |
[13] | 田涛, 段惠莉, 吴金辉, 等. 国内外生化防护服的研究现状与发展对策[J]. 医疗卫生装备, 2008(7):29-31. |
TIAN Tao, DUAN Huili, WU Jinhui, et al. Research status and development countermeasures of biochemical protective clothing at home and abroad[J]. Medical and Medical Equipment, 2008(7):29-31. | |
[14] | 李和国, 李雷, 刘江歌. 选择透过性材料在生化防护服中的应用[J]. 中国个体防护装备, 2005(5):18-20. |
LI Heguo, LI Lei, LIU Jiangge. Application of selective permeability materials in biochemical protective clothing[J]. China Personal Protective Equipment, 2005(5):18-20. | |
[15] |
DU X, XIN B, XU J, et al. Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable applica-tion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125924.
doi: 10.1016/j.colsurfa.2020.125924. |
[16] | 赵越, 李雷, 李和国, 等. 选择透过式皮肤防护材料研究进展[J]. 功能高分子学报, 2020, 33(3):226-244. |
ZHAO Yue, LI Lei, LI Heguo, et al. Research progress in selective penetration skin protective materials[J]. Journal of Functional Polymers, 2020, 33(3):226-244. | |
[17] | 周濛濛, 蒋高明, 高哲. 针织结构生化防护材料的研究现状及发展前景[J]. 针织工业, 2020(3):1-5. |
ZHOU Mengmeng, JIANG Gaoming, GAO Zhe. Research status and development prospects of knitted stucture biochemical protection materials[J]. Knitting Industries, 2020(3):1-5. | |
[18] | 张婷婷, 张杰, 田新宇, 等. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12):174-181. |
ZHANG Tingting, ZHANG Jie, TIAN Xinyu, et al. Rsearch progress of airtight chemical protective clothing[J]. Journal of Textile Research, 2020, 41(12):174-181.
doi: 10.1177/004051757104100215 |
|
[19] | 燕鹏华, 梁滔, 朱晶, 等. 丁基橡胶行业现状分析[J]. 弹性体, 2020, 30(6):62-65. |
YAN Penghua, LIANG Tao, ZHU Jing, et al. Analysis of current situation of butyl rubber industry[J]. Elastomers, 2020, 30(6):62-65. | |
[20] |
RUSZKIEWICZ J A, BURKLE A, MANGERICH A. NAD+ in sulfur mustard toxicity[J]. Toxicology Letters, 2020, 324:95-103.
doi: 10.1016/j.toxlet.2020.01.024 |
[21] |
ZHENG L, WANG D, XU Z, et al. High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites[J]. Composites Science and Technology, 2019, 170:141-147.
doi: 10.1016/j.compscitech.2018.12.002 |
[22] | 陆宁, 唐竹弟, 丛继信, 等. 偏二甲肼防护服涂覆层橡胶材料的研究[J]. 橡胶科技, 2017, 15(4):16-19. |
LU Ning, TANG Zhudi, CONG Jixin, et al. Research on rubber material for coating layer of unsymmetrical dimethylhydrazine protective clothing[J]. Rubber Science & Technology, 2017, 15(4):16-19. | |
[23] |
ADWAITH S, SURESH A, RAMAN A, et al. Effective reuse of CIIR nanocomposite based CPC by the evaluation of thermal decontamination as well as gas barrier properties[J]. Materials Today: Proceedings, 2019, 18: 4630-4636.
doi: 10.1016/j.matpr.2019.07.447 |
[24] |
JUNG K H, POURDEYHIMI B, ZHANG X W. Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes[J]. Journal of Membrane Science, 2010, 362:137-142.
doi: 10.1016/j.memsci.2010.06.031 |
[25] |
YIN X, ZHANG J, Xu J, et al. Fast-acting and highly rechargeable antibacterial composite nanofibrous membrane for protective applications[J]. Composites Science and Technology, 2021. DOI: 10.1016/j.compscitech.2020.108574.
doi: 10.1016/j.compscitech.2020.108574. |
[26] |
CHEN S, LI C, HOU T, et al. Polyhexamethylene guanidine functionalized chitosan nanofiber membrane with superior adsorption and antibacterial perfor-mances[J]. Reactive and Functional Polymers, 2019. DOI: 10.1016/j.reactfunctpolym.2019.104379.
doi: 10.1016/j.reactfunctpolym.2019.104379. |
[27] |
CHENG K, ZHANG N, YANG N, et al. Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance[J]. Separation and Purification Technology, 2021. DOI: 10.1016/j.seppur.2021.118316.
doi: 10.1016/j.seppur.2021.118316. |
[28] |
GUTCH P K, SRIVASTAVA R K, SEKHAR K. Polymeric decontaminant 2(N,N-dichloropolystyrene sulfonamide):synthesis, characterization, and efficacy against simulant of sulfur mustard[J]. Journal of Applied Polymer Science, 2008, 107(6):4109-4115.
doi: 10.1002/app.27636 |
[29] |
CHOI J, MOON D S, RYU S G, et al. N-chloro hydantoin functionalized polyurethane fibers toward protective cloth against chemical warfare agents[J]. Polymer, 2018, 138: 146-155.
doi: 10.1016/j.polymer.2018.01.066 |
[30] |
CHEN L, BROMBERG L, SCHREUDER-GIBSON H, et al. Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats[J]. Journal of Materials Chemistry, 2009, 19(16):2432-2438.
doi: 10.1039/b818639a |
[31] |
YUAN M, TENG Z, WANG S, et al. Polymeric carbon nitride modified polyacrylonitrile fabrics with efficientself-cleaning and water disinfection under visible light[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123506.
doi: 10.1016/j.cej.2019.123506. |
[32] | 王文聪, 范静静, 丁超, 等. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(8):117-123. |
WANG Wencong, FAN Jingjing, DING Chao, et al. Preparation and properties of multifunctional composite conductive wool fabric[J]. Journal of Textile Research, 2019, 40(8):117-123. | |
[33] | 毛贻琴, 丁利君, 王浩, 等. 碳纳米管抗菌性能、机制及应用研究进展[J]. 功能材料, 2018, 49(10):10039-10042. |
MAO Yiqin, DING Lijun, WANG Hao, et al. Research progress on antibacterial properties, mechanisms and applications of carbon nanotubes[J]. Functional Materials, 2018, 49(10):10039-10042. | |
[34] | 李清文, 赵静娜, 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12):145-151. |
LI Qingwen, ZHAO Jingna, ZHANG Xiaohua. Physical properties, macro-preparation and application of carbon nanotube fibers[J]. Journal of Textile Research, 2018, 39(12):145-151. | |
[35] |
AVILES-BARRETO S L, SULEIMAN D. Effect of single-walled carbon nanotubes on the transport properties of sulfonatedpoly(styrene-isobutylene-styrene) membranes[J]. Journal of Membrane Science, 2015, 474:92-102.
doi: 10.1016/j.memsci.2014.09.049 |
[36] |
ISLAM M S, NAZ A N, ALAM M N, et al. Electrospunpoly(vinyl alcohol)/silver nanoparticle/carbon nanotube multi-composite nanofiber mat: Fabrication, characterization and evaluation of thermal, mechanical and antibacterial properties[J]. Colloid and Interface Science Communications, 2020. DOI: 10.1016/j.colcom.2020.100247.
doi: 10.1016/j.colcom.2020.100247. |
[37] |
KUMAR A, DALAL J, DAHIYA S, et al. In situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric[J]. Ceramics International, 2019, 45(1):1011-1019.
doi: 10.1016/j.ceramint.2018.09.280 |
[38] | 王佳豪, 李家成, 许锴, 等. 光催化材料去除水中病毒的研究进展[J]. 化工进展, 2020, 39(10):4248-4255. |
WANG Jiahao, LI Jiacheng, XU Kai, et al. Research progress of photocatalytic materials for virus removal from water[J]. Progress in Chemical Industry, 2020, 39(10):4248-4255. | |
[39] |
SHIMIZU Y, ATEIA M, WANG M, et al. Disinfection mechanism of E. coli by CNT-TiO2 composites: photocatalytic inactivation vs. physical separation[J]. Chemosphere, 2019, 235:1041-1049.
doi: 10.1016/j.chemosphere.2019.07.006 |
[40] | 金秀龙, 丁古巧. 石墨烯材料抗菌抗病毒研究进展[J]. 新材料产业, 2020(2):21-26. |
JIN Xiulong, DING Guqiao. Research progress in anti-bacterial and antiviral graphene materials[J]. New Materials Industry, 2020(2):21-26. | |
[41] | 蹇木强, 张莹莹, 刘忠范. 石墨烯纤维:制备、性能与应用[J]. 物理化学学报, 2022, 38(2): 22-39. |
JIAN Muqiang, ZHANG Yingying, LIU Zhongfa. Graphene fibers: preparation, properties, and applications[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 22-39. | |
[42] |
YU W, LI X, HE J, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 |
[43] |
OUADIL B, AMADINE O, ESSAMLALI Y, et al. A new route for the preparation of hydrophobic and anti-bacterial textiles fabrics using Ag-loaded graphene nanocomposite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. DOI: 10.1016/j.colsurfa.2019.123713.
doi: 10.1016/j.colsurfa.2019.123713. |
[44] | 张亚芳, 徐伯俊, 苏旭中, 等. 生物质石墨烯锦纶/涤纶抑菌纺织品开发与性能[J]. 丝绸, 2019, 56(4):56-62. |
ZHANG Yafang, XU Bojun, SU Xuzhong, et al. Development and performance of biomass graphenenylon/polyester antibacterial textiles[J]. Journal of Silk, 2019, 56(4):56-62. | |
[45] | 吴遥, 张秀玲, 习海玲, 等. 金属有机框架材料在化学战剂降解中的应用研究进展[J]. 化工新型材料, 2021, 49(1):209-213. |
WU Yao, ZHANG Xiuling, XI Hailing, et al. Applicaton research progress of metal organic framework materials in the degradation of chemical warfare agents[J]. New Chemical Materials, 2021, 49(1):209-213. | |
[46] |
LEE D T, JAMIR J D, PETERSON G W, et al. Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification[J]. Matter, 2020, 2(2):404-415.
doi: 10.1016/j.matt.2019.11.005 |
[47] |
SHEN C, MAO Z, XU H, et al. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemicalwarfare agents simulant[J]. Carbohydrate Polymers, 2019, 213:184-191.
doi: 10.1016/j.carbpol.2019.02.044 |
[48] |
SONG Y, CHAU J, SIRKAR K K, et al. Membrane-supported metal organic framework based nanopacked bed for protection against toxic vapors and gases[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117406.
doi: 10.1016/j.seppur.2020.117406. |
[49] |
LARSSON A, QVARNSTROM J, LINDBERG S, et al. In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX[J]. Toxicology Letters, 2021, 339:32-38.
doi: 10.1016/j.toxlet.2020.12.014 |
[50] |
QI Y, HAN L, QI Y, et al. Anti-flavivirus activity of polyoxometalate[J]. Antiviral Research, 2020, 179: 104813.
doi: 10.1016/j.antiviral.2020.104813 |
[51] |
WU K, CHANG Y, WANG J. Preparation of polyoxometalate-doped aminosilane-modified silicate hybrid as a new barrier of chem-bio toxicant[J]. Journal of Inorganic Biochemistry, 2019. DOI: 10.1016/j.jinorgbio.2019.110788.
doi: 10.1016/j.jinorgbio.2019.110788. |
[52] |
FANG Y, XING C, LIU J, et al. Supermolecular film crosslinked by polyoxometalate and chitosan with superior antimicrobial effect[J]. International Journal of Biological Macromolecules, 2020, 154:732-738.
doi: 10.1016/j.ijbiomac.2020.03.139 |
[53] |
BURU C T, WASSON M C, FARHA O K. H5PV2Mo10O40 polyoxometalate encapsulated in NU- 1000 metal-organic framework for aerobic oxidation of a mustard gas simulant[J]. ACS Applied Nano Materials, 2020, 3(1):658-664.
doi: 10.1021/acsanm.9b02176 |
[54] |
MISHRA B, SHARMA S. Shape memory materials with reversible shape change and self-healing abilities: a review[J]. Materials Today: Proceedings, 2021, 44:4563-4568.
doi: 10.1016/j.matpr.2020.10.820 |
[55] | 郭靖, 高翔, 刘兰轩, 等. 复合材料用自修复微胶囊的研究进展[J]. 材料保护, 2019, 52(6):127-132. |
GUO Jing, GAO Xiang, LIU Lanxuan, et al. Research progress of self-healing microcapsules for composite materials[J]. Materials Protection, 2019, 52(6):127-132. | |
[56] |
LITINA C, AL-TABBAA A. First generation microcapsule-based self-healing cementitious construction repair materials[J]. Construction and Building Materials, 2020. DOI: 10.1016/j.conbuildmat.2020.119389.
doi: 10.1016/j.conbuildmat.2020.119389. |
[57] |
KLING S, CZIGANY T. Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling[J]. Composites Science and Technology, 2014, 99:82-88.
doi: 10.1016/j.compscitech.2014.05.020 |
[58] |
ZHOU F, ZHANG Y, ZHANG D, et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125686.
doi: 10.1016/j.colsurfa.2020.125686. |
[59] |
CANBAY C A, UNLU N. Production and characterization of shape memory polymeric nanocomposite materials[J]. Journal of Molecular Structure, 2021. DOI: 10.1016/j.molstruc.2020.129708.
doi: 10.1016/j.molstruc.2020.129708. |
[60] | 孙亚昕, 张秀玲, 习海玲, 等. 静电纺纳米纤维在化学战剂“防消一体化”中的研究进展[J]. 化工新型材料, 2021, 49(1):47-51. |
SUN Yaxin, ZHANG Xiuling, XI Hailing, et al. Research progress of electrospun nanofibers in the "integration of prevention and elimination" of chemical warfare agents[J]. New Chemical Materials, 2021, 49(1):47-51. | |
[61] |
LIU Z, SHANG S, CHIU K, et al. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110308.
doi: 10.1016/j.msec.2019.110308. |
[62] |
WANG S, POMERANTZ N L, DAI Z, et al. Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix[J]. Materials Today Advances, 2020. DOI: 10.1016/j.mtadv.2020.100085.
doi: 10.1016/j.mtadv.2020.100085. |
[63] |
QIU F, XIA Y, WU T, et al. Rationally designed high-performance Zr(OH)4@PAN nanofibrous membrane for self-detoxification of mustard gas simulant under an ambient condition[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117452.
doi: 10.1016/j.seppur.2020.117452. |
[64] |
SEO E, KIM H, BAE K, et al. Optimizing chemical and mechanical stability of catalytic nanofiber web for development of efficient detoxification cloths against CWAs[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2020.123262
doi: 10.1016/j.polymer.2020.123262 |
[1] | 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205. |
[2] | 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202. |
[3] | 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198. |
[4] | 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202. |
[5] | 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155. |
[6] | 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150. |
[7] | 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58. |
[8] | 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72. |
[9] | 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101. |
[10] | 殷士勇, 鲍劲松, 唐仕喜, 杨芸. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(02): 65-73. |
[11] | 刘立东, 李新荣, 刘汉邦, 李丹丹. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(02): 185-192. |
[12] | 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58. |
[13] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[14] | 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127. |
[15] | 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196. |
|