纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 101-106.doi: 10.13475/j.fzxb.20210301606

• 染整与化学品 • 上一篇    下一篇

氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能

熊坦平1, 谭飞2, 黄成2, 阎克路2, 邹妮3, 王政1, 叶敬平4, 纪柏林2()   

  1. 1.上海利以德特种丝有限公司, 上海 201508
    2.东华大学 化学化工与生物工程学院, 上海 201620
    3.上海市第一人民医院, 上海 201620
    4.福建百宏聚纤科技实业有限公司, 福建 泉州 362200
  • 收稿日期:2021-03-03 修回日期:2022-05-03 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 纪柏林
  • 作者简介:熊坦平(1976—),男,工程师。主要研究方向为印染加工技术。
  • 基金资助:
    福建“百人计划”(第四批)项目(闵委人才(2015) 8号)

Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics

XIONG Tanping1, TAN Fei2, HUANG Cheng2, YAN Kelu2, ZOU Ni3, WANG Zheng1, YE Jingping4, JI Bolin2()   

  1. 1. Shanghai Leader Specific-Silk Co., Ltd., Shanghai 201508, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Shanghai General Hospital, Shanghai 201620, China
    4. Fujian Billion Polymerization Technology Industrial Co., Ltd., Quanzhou, Fujian 362200, China
  • Received:2021-03-03 Revised:2022-05-03 Published:2022-08-15 Online:2022-08-24
  • Contact: JI Bolin

摘要:

为评价氯胺抗菌织物在公共卫生领域作为清洁布的实用抗菌效果,采用3–烯丙基–5,5–二甲基乙内酰脲(ADMH)处理涤纶/锦纶超细纤维针织物,以活性氯含量为指标,确定了制备氯胺织物的最佳活化工艺:次氯酸钠溶液活性氯含量3 000 mg/kg,浸泡时间20 min,60 ℃下烘干20 min。测试了氯胺织物对金黄色葡萄球菌和大肠杆菌的抗菌性能以及对甲型流感病毒H1N1的抗病毒性能,并将其用于医院重症加强护理病房(ICU)设施和公共食堂餐桌擦拭清洁。结果表明:活化氯胺织物对金黄色葡萄球菌和大肠杆菌接触3 min时,抑菌率均达到99.999%,对H1N1的抗病毒活性率达到99.94%;经过擦拭的ICU设施表面细菌量为零,氯胺抗菌织物连续擦拭30张桌面后桌面和擦拭织物均不带菌,且氯胺抗菌织物具有良好的活化再生功能。

关键词: 功能性纺织品, 抗菌织物, 卤胺接枝, 抗菌性能, 活化再生, 活性氯

Abstract:

In order to evaluate the practical antimicrobial effect of chloramine fabrics as wiping cloths in the field of public health,the optimal chloramine fabric activation process of polyester/polyamide microfiber fabric grafted with 3–allyl–5,5–dimethylhydantoin (ADMH) was investigated based on the content of active chlorine on the fabric. The optimal activation process was reached when the active chlorine concentration of sodium hypochlorite solution was 3 000 mg/kg, the soaking time was 20 min, and the fabric was dried at 60 ℃ for 20 min. The chloramine fabric was tested for antibacterial performance against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and for antivirus property against influenza A virus H1N1. The treated fabric was used for wiping the intensive care unit (ICU) ward facilities in a hospital and public canteen dining tables. The results show that the antibacterial ratio against both S. aureus and E. coli reaches 99.999%, and the antiviral activity ratio against H1N1 is 99.94%. The amount of residual bacteria on the surface of the cleaned ICU facility is zero. After wiping thirty dining tables successively with the same chloramine fabric, neither the surfaces of the wiped 30 dining tables nor the wiping fabrics were found to be contaminated with bacteria. Moreover, the chloramine fabric shows a good activation and regeneration property of active chlorine when it is treated with sodium hypochlorite solution.

Key words: functional textiles, antibacterial fabric, N-halamine grafting, antimicrobial property, activation and regeneration, active chlorine

中图分类号: 

  • TS195.5

图1

活化工艺条件对织物上活性氯含量的影响"

表1

氯胺抗菌织物对金黄色葡萄球菌和大肠杆菌的抗菌能力"

接触时间/
min
抑菌率/%
对金黄色葡萄球菌 对大肠杆菌
0.5 84.864 87.977
1 94.988 93.974
3 99.999 99.999
5 99.999 99.999
10 99.999 99.999
30 99.999 99.999

表2

氯胺抗菌织物的抗H1N1病毒性能"

试样 感染病毒滴
度的对数值
抗病毒
活性值
抗病毒活
性率/%
对照样(接种孵育0 h) 6.66
对照样(接种孵育2 h) 6.04 3.22 99.94
测试样(接种孵育2 h) 2.82

表3

氯胺抗菌织物擦拭床栏和边柜的抗菌性能"

床号 床栏 边柜
擦拭前 擦拭后 擦拭前 擦拭后
1 有菌 无菌 有菌 无菌
2 有菌 无菌 有菌 无菌
3 有菌 无菌 有菌 无菌
4 有菌 无菌 有菌 无菌

图2

氯胺抗菌织物擦拭餐桌表面的抗菌情况"

图3

氯胺抗菌织物经不同次数洗涤及活化后的活性氯含量"

[1] DING F, ZHANG S, REN X, et al. Development of PET fabrics containing N-halamine compounds with durable antibacterial property[J]. Fibers and Polymers, 2022, 23(2): 413-422.
doi: 10.1007/s12221-021-0448-5
[2] 周青青, 陈嘉毅, 祁珍明, 等. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(5): 112-120.
ZHOU Qingqing, CHEN Jiayi, QI Zhenming, et al. Preparation and characterization of flame retardant and bacterial cotton fabric[J]. Journal of Textile Research, 2020, 41(5): 112-120.
[3] 郑宏飞, 汪瑞琪, 汪庆, 等. 氧化壳聚糖改性抗菌蚕丝织物的制备及其性能[J]. 纺织学报, 2020, 41(5): 121-128.
ZHENG Hongfei, WANG Ruiqi, WANG Qing, et al. Preparation and properties of antibacterial silk fabric modified with oxidized chitosan[J]. Journal of Textile Research, 2020, 41(5): 121-128.
[4] MA Y, WISUTHIPHAE N, BOLT H, et al. N-halamine polypropylene nonwoven fabrics with rechargeable antibacterial and antiviral functions for medical applications[J]. ACS Biomaterials Science & Engineering, 2021, 7(6): 2329-2336.
[5] SUN G. Chemistry of durable and regenerable biocidal textiles[J]. Journal of Chemical Education, 2005, 82(1): 60-64.
doi: 10.1021/ed082p60
[6] NEOH K G, LI M, KANG E T, et al. Surface modification strategies for combating catheter-related complications: recent advances and challenges[J]. Journal of Materials Chemistry B, 2017, 5(11): 2045-2067.
doi: 10.1039/C6TB03280J
[7] SINHA P, LOCKLIN J, HANDA H. A review of the recent advances in antimicrobial coatings for urinary catheters[J]. Acta Biomaterialia, 2017, 50: 20-40.
doi: 10.1016/j.actbio.2016.11.070
[8] WEI T, TANG Z C, YU Q, et al. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities[J]. ACS Applied Materials & Interfaces, 2017, 9(43): 35711-37523.
[9] HUANG C, CHEN Y, SUN G, et al. Disinfectant performance of a chlorine regenerable antibacterial microfiber fabric as a reusable wiper[J]. Materials, 2019, 12(1): 127-140.
doi: 10.3390/ma12010127
[10] LIU S, SUN G. Radical graft functional modification of cellulose with allyl monomers: chemistry and structure characterization[J]. Carbohydrate Polymers, 2008, 71(4): 614-625.
doi: 10.1016/j.carbpol.2007.07.006
[11] 谭飞. 涤/棉复合超细纤维清洁布抗菌整理[D]. 上海: 东华大学, 2020: 15-20.
TAN Fei. Antibacterial finishing for cleaning cloth of polyester/polyamide composite microfiber[D]. Shanghai: Donghua University, 2020: 15-20.
[12] 黄成. 卤胺单体接枝聚酯及槐糖脂交联棉织物抗菌性能研究[D]. 上海: 东华大学, 2020: 53-57.
HUANG Cheng. Research on the antibacterial properties of polyester microfiber fabrics grafted with halamine monomer and cotton fabrics crosslinked with sophorolipids[D]. Shanghai: Donghua University, 2020: 53-57.
[1] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[2] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[3] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[4] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[5] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[6] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[7] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[8] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[9] 王志辉, 徐羽菲, 郭豪玉, 张康磊, 庞星辰, 聂小林, 诸葛健, 魏取福. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196.
[10] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[11] 王春红, 杨璐, 胡敏, 王晓云, 王利剑. 乌拉草提取液中木犀草素含量的测定及其抗菌性能[J]. 纺织学报, 2021, 42(04): 114-120.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[13] 黎俊妤, 蒋培清, 张文奇, 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[14] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[15] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!