纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 132-139.doi: 10.13475/j.fzxb.20210600808

• 染整与化学品 • 上一篇    下一篇

聚氨酯泡沫固定化生物体系对活性蓝4的吸附脱色

杨文博, 张傲洁, 刘幽燕, 李青云()   

  1. 广西大学 化学化工学院, 广西 南宁 530004
  • 收稿日期:2021-06-01 修回日期:2022-05-27 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 李青云
  • 作者简介:杨文博(1995—),男,硕士生。主要研究方向为染料废水的生物脱色。
  • 基金资助:
    国家自然科学基金项目(21066001);广西生物炼制重点实验室基金项目(14-045-14)

Adsorption and decolorization of Reactive Blue 4 by polyurethane foam-immobilized biosystem

YANG Wenbo, ZHANG Aojie, LIU Youyan, LI Qingyun()   

  1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
  • Received:2021-06-01 Revised:2022-05-27 Published:2022-08-15 Online:2022-08-24
  • Contact: LI Qingyun

摘要:

为构建长效作用的生物脱色体系,采用聚氨酯泡沫(PUF)材料对生物吸附剂黄曲霉菌Aspergillus flavus A5p1进行固定化,以蒽醌染料活性蓝4(RB4)为模型底物,开展了生物吸附剂固定化前后的吸附动力学、不同RB4质量浓度和NaCl质量浓度对脱色的影响、重复使用脱色等实验的对比研究。结果表明:菌株经过固定化之后显著加快了对染料RB4的脱色,20 min时对 200 mg/L染料 RB4的吸附率达到77.8%,而未固定化的游离细胞90 min的吸附率为62.8%,脱色过程可采用颗粒内扩散动力学模型来描述;PUF–固定化细胞体系对2 000 mg/L染料RB4的吸附量约是游离细胞体系的2.5倍,并且能耐受NaCl质量浓度为50 g/L 的高盐条件进行脱色;PUF–固定化细胞体系重复使用 7次仍能保持89%的脱色率,而游离细胞体系则下降至74.3%,该PUF–固定化细胞体系展示出对提高RB4生物脱色的有效性及可靠性。

关键词: 生物脱色, 黄曲霉菌, 蒽醌染料, 活性染料, 聚氨酯, 吸附

Abstract:

In order to construct a long-time effect of decolorization system, the biological adsorbent of Aspergillus flavus A5p1 was immobilized on the polyurethane foam (PUF) to decolorize the anthraquinone dye of Reactive Blue 4 (RB4). The adsorption kinetics, different concentrations of RB4, different concentrations of NaCl and repeated batches decolorization by Aspergillus flavus A5p1 before and after immobilization were investigated and compared. Results showed that the decolorization of RB4 was significantly enhanced after Aspergillus flavus A5p1 immobilization. Approximately 77.8% adsorption of the 200 mg/L RB4 was achieved by the PUF–immobilized biological system within 20 min, while 62.8% was achieved by the free cell system within 90 min. The biological decolorization process of RB4 could be described by the kinetics model of intraparticle diffusion. It was found that the PUF–immobilized biosystem adsorbed around 2.5 times more RB4 than that of the free cell system when RB4 concentration was 2 000 mg/L. Moreover, the PUF–immobilized biosystem exhibited good tolerance to the salinity of 50 g/L NaCl. In the repeated batches experiment, the decolorization efficiency of PUF–immobilized biological system could be maintained at 89% after 7 batches, whereas the free cell system was decreased to 74.3%. These results show the effectiveness and reliability of the PUF–immobilized biosystem.

Key words: biological decolorization, Aspergillus flavus, anthraquinone dye, reactive dye, polyurethane, adsorption

中图分类号: 

  • TQ610.9

图1

载体PUF对RB4的吸附等温线"

表1

染料RB4吸附等温模型的拟合参数"

Langmuir Freundlich
KL/(L·mg–1) Qm/(mg·g–1) R2 KF/(L·g–1) n R2
0.010 3.96 0.973 0.425 3.03 0.912

图2

染料RB4的吸附进程曲线"

图3

染料RB4的颗粒内扩散模型"

表2

染料RB4颗粒内扩散模型的拟合参数"

细胞种类 第1阶段 第2阶段 第3阶段
Ki1/
(mg·(g·min1/2)–1)
Ci1 R2 Ki2/
(mg·(g·min1/2)–1)
Ci2 R2 Ki3/
(mg·(g·min1/2)–1)
Ci3 R2
PUF–固定化细胞 60.7 –132.1 0.994 0.901 61.5 0.867 0.041 68.1 0.336
游离细胞 15.3 –30.7 0.995 5.094 6.66 0.975 0.070 48.6 0.724

图4

生物体系对不同质量浓度RB4的脱色"

图5

生物体系在不同NaCl质量浓度条件下的脱色"

图6

生物体系重复批次脱色结果"

[1] VARJANI S, RAKHOLIYA P, NG H Y, et al. Microbial degradation of dyes: an overview[J]. Bioresource Technology, 2020. DOI: org/10.1016/j.biortech.2020.123728.
doi: org/10.1016/j.biortech.2020.123728
[2] 王大全. 精细化工辞典[M]. 北京: 化学工业出版社, 1998: 105.
WANG Daquan. Dictionary of fine chemicals[M]. Beijing: Chemical Industry Press, 1998:105.
[3] 阎其成. 蒽醌染料显现汗潜指纹的初步实验[J]. 刑事技术, 2014 (3): 50-51,72.
YAN Qicheng. Study on the appearance of sweat latent fingerprint by anthraquinone[J]. Forensic Science and Technology, 2014 (3): 50-51,72.
[4] ROUTOULA E, PATWARDHAN S V. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential[J]. Environmental Science & Technology, 2020, 54(2): 647-664.
doi: 10.1021/acs.est.9b03737
[5] CHAUDHARI A U, PAUL D, DHOTRE D, et al. Effective biotransformation and detoxification of anthraquinone dye Reactive Blue 4 by using aerobic bacterial granules[J]. Water Research, 2017, 122: 603-613.
doi: 10.1016/j.watres.2017.06.005
[6] COLLIVIGNARELLI M C, ABBA A, MIINO M C, et al. Treatments for color removal from wastewater: state of the art[J]. Journal of Environmental Management, 2019, 236: 727-745.
doi: 10.1016/j.jenvman.2018.11.094
[7] LEDAKOWICZ S, PAZDZIOR K. Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods[J]. Molecules, 2021. DOI: org/10.3390/molecules26040870.
doi: org/10.3390/molecules26040870
[8] WANG Y, WANG H, WANG X, et al. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update[J]. Science of the Total Environment, 2020. DOI: org/10.1016/j.scitotenv.2020.139034.
doi: org/10.1016/j.scitotenv.2020.139034
[9] SEN S K, RAUT S, BANDYOPADHYAY P, et al. Fungal decolouration and degradation of azo dyes: a review[J]. Fungal Biology Reviews, 2016, 30(3): 112-133.
doi: 10.1016/j.fbr.2016.06.003
[10] SIMOES M F, MAIORANO A E, SANTOS J G, et al. Microbial fuel cell-induced production of fungal laccase to degrade the anthraquinone dye Remazol Brilliant Blue R[J]. Environmental Chemistry Letters, 2019, 17(3): 1413-1420.
doi: 10.1007/s10311-019-00876-y
[11] RYBCZYNSKA-TKACZYK K, KORNILLOWICZ-KOWALSKA T, SZYCHOWSKI K, et al. Biotransformation and toxicity effect of monoanthraquinone dyes during Bjerkandera adusta CCBAS 930 cultures[J]. Ecotoxicology and Environmental Safety, 2020. DOI: org/10.1016/j.ecoenv.2020.110203.
doi: org/10.1016/j.ecoenv.2020.110203
[12] POZDNYAKOVA N N, VARESE G C, PRIGIONE V, et al. Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii[J]. International Microbiology, 2019, 22(1): 103-110.
doi: 10.1007/s10123-018-0032-z
[13] 程绿竹, 王宗乾, 王邓峰, 等. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(2): 129-134.
CHENG Lüzhu, WANG Zongqian, WANG Dengfeng, et al. Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue[J]. Journal of Textile Research, 2021, 42(2): 129-134.
[14] AKAR T, KURSUNLU G, CELIK S, et al. Immobilized mucor plumbeus on sepiolite support: a potential decolorization agent suitable for batch and continuous mode water treatment[J]. Journal of Cleaner Production, 2021. DOI: org/10.1016/j.jclepro.2021.126283.
doi: org/10.1016/j.jclepro.2021.126283
[15] 夏卓英, 郭春缘, 林亚楠, 等. 丝瓜络固定脱色菌对活性艳红X3B的脱色性能研究[J]. 中国资源综合利用, 2020, 38(3): 1-6.
XIA Zhuoying, GUO Chunyuan, LIN Ya'nan, et al. Study on the decolorization of Reactive Birlliant Red X3B by decolorizing strain immobilized on Luffa Cylindrica(L.)Roem[J]. China Resources Comprehensive Utilization, 2020, 38(3): 1-6.
[16] Al-AMSHAWEE S, YUNUS M Y B, VO D V N, et al. Biocarriers for biofilm immobilization in wastewater treatments: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 1925-1945.
doi: 10.1007/s10311-020-01049-y
[17] PRABHAVATHI P, RAJENDRAN R, KARTHIKSUNDARAM S, et al. Enhanced bioremediation efficiency of denim industrial effluent using bacterial biofilm onto polyurethane matrix[J]. Applied Biochemistry and Microbiology, 2014, 50(6): 554-562.
doi: 10.1134/S0003683814060131
[18] DE I, CABRERA G, RAMIREZ M, et al. Immobilization of cells on polyurethane foam[M]//GUISAN J M. Immobilization of enzymes and cells. 2nd ed. New York: Humana Press, 2006: 357.
[19] WANG L, WU D, TANG P, et al. Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis[J]. Carbohydrate Polymers, 2012, 90(2): 1106-1113.
doi: 10.1016/j.carbpol.2012.06.050
[20] HAMA S, ONODERA K, YOSHIDA A, et al. Improved production of phospholipase A1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions[J]. Biochemical Engineering Journal, 2015, 96: 1-6.
doi: 10.1016/j.bej.2014.12.013
[21] CHENG N, LI Q Y, TANG A X, et al. Decolorization of a variety of dyes by Aspergillus flavus A5p1[J]. Bioprocess and Biosystems Engineering, 2018, 41: 511-518.
doi: 10.1007/s00449-017-1885-9
[22] YUAN T, ZHANG S, CHEN Y, et al. Enhanced Reactive Blue 4 biodegradation performance of newly isolated white rot fungus Antrodia P5 by the synergistic effect of herbal extraction residue[J]. Frontiers in Microbiology, 2021. DOI: org/10.3389/fmicb.2021.644679.
doi: org/10.3389/fmicb.2021.644679
[23] WEBER J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1963, 89(2): 31-59.
doi: 10.1061/JSEDAI.0000430
[24] SILVEIRA N J D J, MOREIRA G C, DA SILVA C J, et al. Use of polyurethane foams for the removal of the Direct Red 80 and Reactive Blue 21 dyes in aqueous medium[J]. Desalination, 2011, 281: 55-60.
doi: 10.1016/j.desal.2011.07.041
[25] GOES M M, KELLER M, OLIVEIRA V M, et al. Polyurethane foams synthesized from cellulose-based wastes: kinetics studies of dye adsorption[J]. Industrial Crops and Products, 2016, 85: 149-158.
doi: 10.1016/j.indcrop.2016.02.051
[26] SAEED A, IQBAL M, ZAFAR S I. Immobilization of trichoderma viride for enhanced methylene blue biosorption: batch and column studies[J]. Journal of Hazardous Materials, 2009, 168(1): 406-415.
doi: 10.1016/j.jhazmat.2009.02.058
[27] GAN L, ZHOU F, OWENS G, et al. Burkholderia cepacia immobilized on eucalyptus leaves used to simultaneously remove malachite green (MG) and Cr (VI)[J]. Colloids and Surfaces B: Biointerfaces, 2018, 172: 526-531.
doi: 10.1016/j.colsurfb.2018.09.008
[28] YOUSSEF M, SHATOURY E H, ALI S S, et al. Enhancement of phenol degradation by free and immobilized mixed culture of Providencia stuartii PL4 and Pseudomonas aeruginosa PDM isolated from activated sludge[J]. Bioremediation Journal, 2019, 23(2): 53-71.
doi: 10.1080/10889868.2019.1602106
[29] FONTENOT E J, LEE Y H, MATTHEWS R D, et al. Reductive decolorization of a textile reactive dyebath under methanogenic conditions[J]. Applied Biochemistry and Biotechnology, 2003, 109: 207-225.
doi: 10.1385/ABAB:109:1-3:207
[30] 杨蕴哲. 原位电生成活性氯氧化降解脱色蒽醌染料[D]. 大连: 大连理工大学, 2005: 8-20.
YANG Yunzhe. Electrochemical treatment of anthraquinone dye with in suit electrogenerated active chlorine[D]. Dalian: Dalian University of Technology, 2005: 8-20.
[31] LI H, MENG F, DUAN W, et al. Biodegradation of phenol in saline or hypersaline environments by bacteria: a review[J]. Ecotoxicology and Environmental Safety, 2019. DOI: org/10.1016/j.ecoenv.2019.109658.
doi: org/10.1016/j.ecoenv.2019.109658
[32] SHAHEEN R, ASGHER M, HUSSAIN F, et al. Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties[J]. International Journal of Biological Macromolecules, 2017, 103: 57-64.
doi: 10.1016/j.ijbiomac.2017.04.040
[33] YUAN S Z, LU H, WANG J, et al. Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions[J]. Process Biochemistry, 2012, 47(2): 312-318.
doi: 10.1016/j.procbio.2011.11.015
[34] PADMANABAN V C, GEED S R R, ACHARY A, et al. Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1[J]. Bioresource Technology, 2016, 213: 39-43.
doi: 10.1016/j.biortech.2016.02.126
[35] WANG J F, HUANG J Q, GUO H Y, et al. Optimization of immobilization conditions for Lactobacillus pentosus cells[J]. Bioprocess and Biosystems Engineering, 2020, 43: 1071-1079.
doi: 10.1007/s00449-020-02305-9
[36] MULLA S I, TALWAR M P, BAGEWADI Z K, et al. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1[J]. Chemosphere, 2013, 90(6): 1920-1924.
doi: 10.1016/j.chemosphere.2012.10.030
[1] 谢子文, 李家炜, 汪芬萍, 戚栋明, 严小飞, 朱晨凯, 赵磊, 何贵平. 有机硅改性水性聚氨酯丙烯酸酯杂化胶乳的制备及其在涂料印花中的应用[J]. 纺织学报, 2022, 43(08): 119-125.
[2] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[3] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[4] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[5] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[6] 戚栋明, 樊高晴, 虞一浩, 符晔, 张艳, 陈智杰. 蓖麻油基紫外光固化水性涂料墨水制备及其印花性能[J]. 纺织学报, 2022, 43(05): 26-31.
[7] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[8] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[9] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[10] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[11] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[12] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[13] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[14] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[15] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!