纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 55-59.doi: 10.13475/j.fzxb.20210700605

• 纤维材料 • 上一篇    下一篇

聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能

李伟平1, 杨桂霞1(), 程志强1, 赵春莉2   

  1. 1.吉林农业大学 资源与环境学院, 吉林 长春 130118
    2.吉林农业大学 园艺学院, 吉林 长春 130118
  • 收稿日期:2021-07-01 修回日期:2022-03-12 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 杨桂霞
  • 作者简介:李伟平(1995—),男,硕士生。主要研究方向为芦荟的抑菌性能。
  • 基金资助:
    吉林省发展和改革委员会创新能力建设项目(2020C024–5);吉林省科技发展项目(20200708066YY)

Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane

LI Weiping1, YANG Guixia1(), CHENG Zhiqiang1, ZHAO Chunli2   

  1. 1. College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin 130118, China
    2. College of Horticulture, Jilin Agricultural University, Changchun, Jilin 130118, China
  • Received:2021-07-01 Revised:2022-03-12 Published:2022-08-15 Online:2022-08-24
  • Contact: YANG Guixia

摘要:

为提升聚乙烯吡咯烷酮(PVP)的抗菌性能,将天然抑菌剂芦荟(Aloe)负载在PVP中,通过静电纺丝法制备不同质量比的PVP/Aloe复合纳米纤维膜。借助扫描电子显微镜、傅里叶变换红外光谱仪、接触角分析仪、表面张力计对该复合纳米纤维膜的形态、亲(疏)水性、粒径和基团结构进行表征与分析。结果表明:由于芦荟与PVP之间相互的物理作用,使制备的纳米纤维膜呈现相互分开又相互黏连的油条状结构,当PVP与芦荟的质量比为10∶4 时,形成的油条状结构最为明显;PVP/Aloe复合纳米纤维膜对金黄色葡萄球菌具有抑菌作用,抑菌率达到86.2%。

关键词: 芦荟, 聚乙烯吡咯烷酮, 医用敷料, 静电纺丝, 纳米纤维膜, 抗菌性能

Abstract:

In order to promote the antibacterial properties of polyvinylpyrrolidone (PVP), the natural bacteriostatic agent aloe was loaded in PVP. PVP/Aloe composite nanofiber membranes with different mass ratios were prepared by electrospinning. The morphology, hydrophilicity (hydrophobicity), particle size and group structure of the composite nanofiber membrane were characterized and analyzed by means of scanning electron microscope, Fourier transform infrared spectroscopy, contact angle analyzer and surface tensiometer. The results showed that due to the physical interaction between aloe and PVP, the prepared nanofibrous membrane showed a fritter-like structure that was separated from each other and adhered to each other. When the mass ratio of PVP and aloe vera was 10∶4, the fritter-like structure formed was the most obvious. The antibacterial experiment shows that the nanofiber membrane has antibacterial effect on Staphylococcus aureus, and the antibacterial rate reaches 86.2%.

Key words: aloe, polyvinylpyrrolidone, medical dressing, electrospinning, nanofiber membrane, antibacterial property

中图分类号: 

  • TS

图1

不同质量比的PVP/Aloe复合纳米纤维膜的SEM照片和直径分布图"

图2

PVP/Aloe复合纳米纤维膜在不同时间时的水接触角"

图3

不同质量比的PVP/Aloe纺丝液的表面张力"

图4

不同质量比的PVP/Aloe复合纳米纤维膜的红外光谱图"

图5

纯PVP及PVP/Aloe复合纳米纤维膜抑菌圈分析结果"

[1] KAYE K S, PETTY L A, SHORR A F, et al. Current epidemiology, etiology, and burden of acute skin infections in the United States[J]. Clinical Infectious Diseases, 2019(S3): 193-199.
[2] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015, 46(15): 790-814.
[3] MENG J, AGRAHARI V, YOUM I. Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechno-logy[J]. Journal of Neuroimmune Pharmacology, 2016, 12(1): 1-15.
[4] 舒泉水, 陈仕平, 张鹏, 等. 聚乙烯醇/海藻酸钠/甲基丙烯酸缩水甘油酯复合纳米纤维制备与性能[J]. 材料科学与工程学报, 2020, 38(1): 43-47.
SHU Quanshui, CHEN Shiping, ZHANG Peng, et al. Preparation and properties of polyvinyl alcohol/sodium alginate/glycidyl methacrylate composite nanofibers[J]. Journal of Materials Science and Engineering, 2020, 38(1): 43-47.
[5] HOMAEIGOHAR S, BOCCACCINI A R. Antibacterial biohybrid nanofibers for wound dressings[J]. Acta Biomaterialia, 2020, 107:25-49.
doi: 10.1016/j.actbio.2020.02.022
[6] SAGHAZADEH S, RINOLDI C, SCHOT M, et al. Drug delivery systems and materials for wound healing applications[J]. Advanced Drug Delivery Reviews, 2018, 127:138-166.
doi: 10.1016/j.addr.2018.04.008
[7] MOFOKENG J P, LUYT A S. Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler[J]. Journal of Materials Science, 2015, 50(10): 3812-3824.
doi: 10.1007/s10853-015-8950-z
[8] LEE H, XU G, KHARAGHANI D, et al. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles[J]. International Journal of Pharmaceutics, 2017, 531(1): 101-107.
doi: 10.1016/j.ijpharm.2017.08.081
[9] CAI C, GONG H, LI W, et al. A flexible and highly sensitive pressure sensor based on three-dimensional electrospun carbon nanofibers[J]. RSC Advances, 2021, 11(23): 13898-13905.
doi: 10.1039/D0RA10803K
[10] YUSSUF A A, MASSOUMI I, HASSAN A. Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability proper-ties[J]. Journal of Polymers & the Environment, 2010, 18(3): 422-429.
[11] YUAN W, ZHANG J, LIU L, et al. Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning[J]. Materials Letters, 2012, 75: 95-98.
doi: 10.1016/j.matlet.2012.01.074
[12] LI R, CHENG Z, WEN R, et al. Novel SA@Ca2+/RCSPs core-shell structure nanofibers by electrospinning for wound dressings[J]. RSC Advances, 2018, 8(28): 15558-15566.
doi: 10.1039/C8RA00784E
[13] LUISA G C, CLAUDIA C, MARTHA L. Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles[J]. Marine Drugs, 2017, 15(10): 328.
doi: 10.3390/md15100328
[14] KUPNIK K, PRIMOZIC M, KNEZ Z, et al. Antimicrobial efficiency of aloe arborescens and aloe barbadensis natural and commercial products[J]. Plants (Basel), 2021, 10(1): 92.
[15] SILVA S S, CARIDADE S G, MANO J F, et al. Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications[J]. Carbohydrate Polymers, 2013, 98(1): 581-588.
doi: 10.1016/j.carbpol.2013.06.022
[16] NEJATZADEH-BARANDOZI F. Antibacterial activities and antioxidant capacity of aloe vera[J]. Organic and Medicinal Chemistry Letters, 2013, 3(1): 1-8.
doi: 10.1186/2191-2858-3-1
[17] KUMAR R, SINGH A K, GUPTA A, et al. Therapeutic potential of aloe vera: a miracle gift of nature[J]. Phytomedicine, 2019. DOI: 10.1016/j.phymed. 2019.152996.
doi: 10.1016/j.phymed. 2019.152996
[18] SAHU P K, GIRI D D, SINGH R, et al. Therapeutic and medicinal uses of aloe vera: a review[J]. Pharmacology & Pharmacy, 2013, 4(8): 599-610.
doi: 10.4236/pp.2013.48086
[19] KHANZADA H, SALAM A, QADIR M B, et al. Fabrication of promising antimicrobial aloe vera/PVA electrospun nanofibers for protective clothing[J]. Materials (Basel), 2020. DOI: 10.3390/ma13173884.
doi: 10.3390/ma13173884
[20] XU F, WANG H, ZHANG J, et al. A facile design of EGF conjugated PLA/gelatin electrospun nanofibers for nursing care of in vivo wound healing applications[J]. Journal of Industrial Textiles, 2020. DOI: 10.1177/1528083720976348.
doi: 10.1177/1528083720976348
[21] LI R, CHENG Z, YU X, et al. Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning[J]. Materials Letters, 2019, 254:206-209.
doi: 10.1016/j.matlet.2019.07.075
[22] UNNITHAN A R, GNANASEKARAN G, SATHISHKUMAR Y, et al. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing[J]. Carbohydrate Polymers, 2014, 102: 884-892.
doi: 10.1016/j.carbpol.2013.10.070
[23] MIRMAJIDI T, CHOGAN F, REZAYAN A H, et al. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin[J]. International Journal of Pharmaceutics, 2021. DOI: 10.1016/j.ijpharm. 2021.120213.
doi: 10.1016/j.ijpharm. 2021.120213
[1] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[2] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[3] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[4] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[5] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[6] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[7] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[8] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[9] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[10] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[11] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[12] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[13] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[14] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[15] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!