纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 60-66.doi: 10.13475/j.fzxb.20210702607

• 纺织工程 • 上一篇    下一篇

丝素蛋白/聚左旋乳酸纳米纤维纱线肌腱补片的制备及其性能

刘蛟, 陈韶娟, 吴韶华()   

  1. 青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2021-07-07 修回日期:2022-02-11 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 吴韶华
  • 作者简介:刘蛟(1996—),女,硕士生。主要研究方向为生物医用纺织材料。
  • 基金资助:
    山东省自然科学基金青年基金项目(ZR2020QE090)

Preparation and properties of silk fibroin/poly(l-lactic acid) nanofiber yarns-based tendon patches

LIU Jiao, CHEN Shaojuan, WU Shaohua()   

  1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2021-07-07 Revised:2022-02-11 Published:2022-08-15 Online:2022-08-24
  • Contact: WU Shaohua

摘要:

针对用于纺织肌腱补片的纯微米纱线结构生物活性低、免疫原性强和不可降解的缺陷,从补片材质和结构优化角度出发,构建了几种可生物吸收的纳米结构肌腱补片,以自制的丝素蛋白(SF)/聚左旋乳酸(PLLA)纳米纤维纱线为纬纱,以传统PLLA微米纤维纱线为经纱,经机织工艺加工成形。系统研究了SF和PLLA组分配比对补片形态结构、理化性能以及生物性能的影响。结果表明:补片均在约16.4°出现了结晶衍射峰,且随着SF占比的增加,补片的结晶度和力学性能均逐渐降低,但其断裂载荷均在100 N以上,可满足实际应用需求,且补片的细胞黏附和增殖能力均随SF质量分数的增加逐渐增强。

关键词: 医用纺织品, 肌腱补片, 纳米纤维纱线, 丝素蛋白, 聚左旋乳酸

Abstract:

Textile tendon patches made of pure micro yarn structure has low biological activity, high immunogenicity and is non-biodegradable. Several nano-structured tendon patches with great bioabsorbability were fabricated by weaving with optimized patch material and structure. The weft yarn was constructed with the several different types of silk fibroin (SF)/poly(l-lactic acid) (PLLA) nanofiber yarns, the warp yarn was all composed of traditional PLLA microfiber yarns, and the two sets of yarns were interweaved into patches through the weaving process. The effects of the SF and PLLA mass ratio of nanofiber yarns on the morphology, physicochemical and biological properties of such patches were systematically investigated. The results showed that the crystal diffraction appeared at about 16.4°, and crystallinity and mechanical properties of the patches decreased gradually with the increase of SF content. The breaking loads of all tendon patches were found to be higher than 100 N, meeting the requirement of practical application. The biological tests showed that cell adhesion and proliferation ability of the patches gradually improved with the increase of SF content.

Key words: medical textiles, tendon patch, nanofiber yarn, silk fibroin, poly(l-lactic acid)

中图分类号: 

  • TS101.4

图1

不同质量比SF/PLLA纳米纤维纱线肌腱补片的扫描电镜照片"

图2

不同质量比SF/PLLA纳米纤维纱线肌腱补片纳米纤维直径"

图3

不同质量比SF/PLLA纳米纤维纱线肌腱补片纳米纤维取向度分布"

图4

不同质量比SF/PLLA纳米纤维纱线肌腱补片FT-IR和XRD曲线"

图5

不同质量比SF/PLLA纳米纤维纱线肌腱补片载荷–伸长曲线"

表1

不同质量比SF/PLLA纳米纤维纱线肌腱补片力学性能"

SF与PLLA
质量比
断裂载
荷/N
断裂伸
长率/%
断裂强
度/MPa
初始模
量/MPa
0∶100 220.03±4.01 23.83±1.62 26.82±1.96 460.72±18.77
20∶80 213.45±7.07 23.84±1.06 25.59±1.17 421.46±36.23
35∶65 177.81±5.23 23.86±0.69 22.23±0.66 394.82±35.49
50∶50 113.38±1.78 24.44±0.37 14.14±0.28 303.66±40.13

图6

不同质量比SF/PLLA纳米纤维纱线肌腱补片鬼笔环肽染色照片"

图7

不同质量比SF/PLLA纳米纤维纱线肌腱补片细胞黏附扫描电镜照片"

图8

不同质量比SF/PLLA纳米纤维纱线肌腱补片的吸光度 注:“*”表示P<0.05;“**”表示P<0.01。"

[1] VASILIADIS Angelo V, KATAKASLOS Konstantinos. The role of scaffolds in tendon tissue engineering[J]. J Funct Biomater, 2020. DOI: 10.3390/jfb11040078.
doi: 10.3390/jfb11040078
[2] XU Tianpeng, BAI Jiaxiang, XU Menglei, et al. Relaxin inhibits patellar tendon healing in rats: a histological and biochemical evaluation[J]. BMC Musculoskelet Disord, 2019. DOI: 10.1186/s12891-019-2729-3.
doi: 10.1186/s12891-019-2729-3
[3] GAUT Ludovic, DUPREZ Delphine. Tendon development and diseases[J]. Wiley Interdiscip Rev Dev Biol, 2016, 5(1): 5-23.
doi: 10.1002/wdev.201
[4] SNEDEKER Jess G, FOOLEN Jasper. Tendon injury and repair: a perspective on the basic mechanisms of tendon disease and future clinical therapy[J]. Acta Biomater, 2017, 63: 18-36.
doi: 10.1016/j.actbio.2017.08.032
[5] WU Shaohua, PENG Hao, LI Xiehong, et al. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic acid) fibrous meshes[J]. Biofabrication, 2017. DOI: 10.1088/1758-5090/aa8fb8.
doi: 10.1088/1758-5090/aa8fb8
[6] JIAO Yongjie, LI Chaojing, LIU Laijun, et al. Construction and application of textile-based tissue engineering scaffolds: a review[J]. Biomater Sci, 2020, 8(13): 3574-3600.
doi: 10.1039/D0BM00157K
[7] ALMEIDA L R, MARTINS A R, FERNANDES E M, et al. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability[J]. Acta Biomater, 2013, 9(9): 8167-8181.
doi: 10.1016/j.actbio.2013.05.019
[8] WU Shaohua, WANG Ying, STREUBEL Philipp N, et al. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation[J]. Acta Biomater, 2017, 62: 102-115.
doi: S1742-7061(17)30557-3 pmid: 28864251
[9] WU Shaohua, DUAN Bin, LIU Penghong, et al. Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds[J]. ACS Appl Mater Interfaces, 2016, 8(26): 16950-16960.
doi: 10.1021/acsami.6b05199
[10] WU Shaohua, ZHOU Rong, ZHOU Fang, et al. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/microfiber hybrid yarns for tendon tissue engineering application[J]. Mater Sci Eng C Mater Biol Appl, 2020. DOI: 10.1016/j.msec.2019.110268.
doi: 10.1016/j.msec.2019.110268
[11] WU Shaohua, LIU Jiao, QI Ye, et al. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2021. DOI: 10.1016/j.msec.2021.112181.
doi: 10.1016/j.msec.2021.112181
[12] MIRANDA Catarina S, RIBEIRO Ana R M, HOMEM Natalia C, et al. Spun biotextiles in tissue engineering and biomolecules delivery systems[J]. Antibiotics (Basel), 2020. DOI: 10.3390/antibiotics9040174.
doi: 10.3390/antibiotics9040174
[13] LIU Jiao, ZHAI Huiyuan, SUN Yaning, et al. Developing high strength poly(L-lactic acid) nanofiber yarns for biomedical textile materials: a comparative study of novel nanofiber yarns and traditional microfiber yarns[J]. Materials Letters, 2021. DOI: 0.1016/j.matlet.2021.130229.
doi: 0.1016/j.matlet.2021.130229
[14] MALEKI H, GHAREHAGHAJI A A, TOLIYAT T, et al. Drug release behavior of electrospun twisted yarns as implantable medical devices[J]. Biofabrication, 2016. DOI: 10.1088/1758-5090/8/3/035019.
doi: 10.1088/1758-5090/8/3/035019
[15] PARK Koeun, JUNG Sungyoun, LEE Seungjin J, et al. Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers[J]. Int J Biol Macromol, 2006, 38(3-5): 165-173.
doi: 10.1016/j.ijbiomac.2006.03.003
[16] LIU Weiwei, LI Zhengqiang, ZHENG Lu, et al. Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering[J]. Tissue Eng Regen Med, 2016, 13(5): 516-526.
doi: 10.1007/s13770-016-9099-9 pmid: 30603432
[17] LI Jingqing, XIAO Peitao, LI Hongfei, et al. Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites[J]. Polymer Chemistry, 2015, 6(21): 3988-4002.
doi: 10.1039/C5PY00254K
[18] ANDROSCH R, SCHICK C, DILORENZO M L. Melting of conformationally disordered crystals (α'-Phase) of poly(L-lactic acid)[J]. Macromolecular Chemistry and Physics, 2014, 215(11): 1134-1139.
doi: 10.1002/macp.201400126
[19] WANG Fang, LI Yingying, GOUGH Christopher R, et al. Dual-crystallizable silk fibroin/poly(L-lactic acid) biocomposite films: effect of polymer phases on protein structures in protein-polymer blends[J]. Int J Mol Sci, 2021. DOI: 10.3390/ijms22041871.
doi: 10.3390/ijms22041871
[1] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[2] 顾张弘, 姚响, 王锦思, 张耀鹏. 具有细胞黏附反差特性的单层平行丝素蛋白纤维图案的制备及其性能[J]. 纺织学报, 2022, 43(05): 1-6.
[3] 雷彩虹, 俞林双, 朱海霖, 郑涛, 陈建勇. 不同水解方式下蚕丝丝素蛋白材料的止血性能[J]. 纺织学报, 2022, 43(04): 15-19.
[4] 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7.
[5] 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23.
[6] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[7] 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77.
[8] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[9] 姚若彤, 赵婧媛, 闫一欣, 段立蓉, 王恬, 严佳, 张淑军, 李刚. 新型可降解编织结构神经再生导管的制备及其性能[J]. 纺织学报, 2022, 43(02): 125-131.
[10] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8.
[11] 卢俊, 管晓宁, 林婧, 劳继红, 王富军, 李彦, 王璐. 人工韧带疲劳测试装置设计及其耐疲劳性能评价[J]. 纺织学报, 2021, 42(11): 71-76.
[12] 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184.
[13] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[14] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[15] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!