纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 101-106.doi: 10.13475/j.fzxb.20210600906

• 纺织工程 • 上一篇    下一篇

纱线毛羽路径匹配追踪检测

邓中民, 于东洋, 胡灏东, 李童, 柯薇()   

  1. 武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
  • 收稿日期:2021-06-01 修回日期:2022-04-14 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 柯薇
  • 作者简介:邓中民(1963—),男,教授,博士。主要研究方向为数字化纺织。
  • 基金资助:
    湖北省技术创新专项资助项目(2019AAA005)

Tracking and detection hairiness path in yarns

DENG Zhongmin, YU Dongyang, HU Haodong, LI Tong, KE Wei()   

  1. State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2021-06-01 Revised:2022-04-14 Published:2022-09-15 Online:2022-09-26
  • Contact: KE Wei

摘要:

针对现有纱线毛羽检测方法无法有效检测弯曲毛羽和交叉毛羽的缺陷,提出一种基于图像法的纱线毛羽路径匹配追踪算法。将采集到的纱线毛羽图像通过预处理、骨干化处理获取毛羽骨干图像,以毛羽端点作为起始点,对其八邻域像素点进行判断获取新的毛羽路径点,重复对毛羽路径点邻域判断直到没有毛羽路径点存在。对毛羽交叉出现多路径点的情况,提出交叉匹配值指标,即根据毛羽交叉点前部分相邻毛羽路径点间斜率并分配动态权重得到毛羽局部斜度,利用交叉匹配值对多路径毛羽点进行匹配获取新的毛羽路径点,通过本文毛羽追踪方法获取毛羽像素数量并转化为毛羽长度。与人工法和投影法检测结果对比表明:本文毛羽追踪检测结果与人工检测毛羽结果误差在4%以内,有效解决了交叉毛羽和弯曲毛羽追踪检测问题,提高了纱线毛羽的检测准确度。

关键词: 纱线毛羽, 路径匹配, 八邻域, 动态权重, 毛羽斜度, 毛羽检测, 图像法

Abstract:

Aiming at the problem that the existing yarn hairiness detection methods cannot effectively detect curving and crossing hairiness, this paper presents a yarn hairiness path tracing algorithm based on an image analysis method. The backbone processed images were obtained by the pre-processing followed by backbone processing. The hairiness endpoint was taken as the starting point, and the new hairiness path point was obtained by judging the eight neighboring pixels of hairiness starting point, the neighborhood of hairiness path points was judged repeatedly until no hairiness path points existed. In the case of multi-path intersection of hairiness, the cross-matching value index was proposed. According to the slope of the adjacent hairiness path points in front of the cross point of hairiness and assigning dynamic weight to get the local slope of hairiness, cross-matching value was used to match the multi-path hairiness points to get the new hairiness points, and the number of hairiness pixels was obtained and converted into the hairiness length by the hairiness tracking method. According to the comparison of the detection results coming from the manual method and projection method, the error between the detected result of hairiness tracking and the manual inspection was less than 4%. This result indicated an effective solution to the problem in tracking and detecting the crossing and curving hairiness, improving the detection accuracy of yarn hairiness.

Key words: yarn hairiness, path matching, eight neighborhoods, dynamic weight, hairiness slope, hairiness detection, image analysis method

中图分类号: 

  • TS107

图1

原始纱线图像"

图2

预处理后纱线图像"

图3

取反后毛羽骨干化图像"

图4

多路径毛羽点"

图5

毛羽追踪流程图"

图6

毛羽路径"

图7

B1邻域点"

图8

多重合毛羽点交叉"

图9

交叉区域"

图10

毛羽样本"

表1

毛羽长度检测结果对比"

毛羽样本 投影法/mm 人工法/mm 路径匹配追踪法
图像/像素 长度/mm
样本1a 0.92 1.09 256 1.02
样本1b 2.02 2.61 601 2.40
样本2 0.46 1.04 228 0.91
样本3 0.89 1.18 255 1.02
样本4 0.68 1.08 231 0.92

表2

路径匹配追踪方法与人工法检测结果对比"

样品
编号
毛羽数量/根 偏差/%
路径匹配追踪法 人工法
1 530.34 548.84 3.4
2 88.37 91.94 3.9
3 35.43 36.22 2.2
4 11.14 11.14 0.0
5 8.36 8.36 0.0
6 5.57 5.57 0.0

表3

路径匹配追踪方法与投影法检测结果对比"

样品
编号
毛羽数量/根 偏差/%
路径匹配追踪法 投影法
1 530.34 284.60 46.3
2 88.37 73.20 17.2
3 35.43 23.20 34.5
4 11.14 10.30 7.5
5 8.36 3.70 55.7
6 5.57 0.90 83.8
[1] CARVALHO V H, CARDOSO P J, VASCONCELOS R M, et al. Optical yarn hairiness measurement system[C]//IEEE International Conference on Industrial Informatics. New York: IEEE, 2007:359-364.
[2] WANG Wendi, XIN Binjie, DENG Na, et al. Objective evaluation on yarn hairiness detection based on multi-view imaging and processing method[J]. Measurement, 2019, 148:1-5.
[3] 孟宪鸿, 陈跃华. 数字图像处理法测纱线毛羽的方法和仪器[J]. 上海纺织科技, 2003, 31(4):15-16.
MENG Xianhong, CHEN Yuehua. Method and apparatus of image processing in yarn hairiness measurement[J]. Shanghai Textile Science & Technology, 2003, 31(4):15-16.
[4] JING J, HUANG M, LI P, et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018, 109(6):740-749.
doi: 10.1080/00405000.2017.1368106
[5] WANG Lei, XU Bugao, GAO Weidong. Multi-perspective measurement of yarn hairiness using mirrored images[J]. Textile Research Journal, 2016. DOI: 10.1177/0040517516685281.
doi: 10.1177/0040517516685281
[6] 孙银银, 张宁, 吴洋, 等. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017, 38(8):32-38.
SUN Yinyin, ZHANG Ning, WU Yang, et al. Tracking measurement of yarn hairiness skeleton and length[J]. Journal of Textile Research, 2017, 38(8):32-38.
[7] 吴珍. 纱线毛羽的图像检测技术研究[D]. 郑州: 中原工学院, 2016:1-56.
WU Zhen. Study on image detection technique of yarn hairiness[D]. Zhengzhou: Zhongyuan University of Technology, 2016:1-56.
[8] 方珩, 辛斌杰, 刘晓霞, 等. 一种新型纱线毛羽图像特征识别算法的研究[J]. 河北科技大学学报, 2015, 36(1):63-72.
FANG Heng, XIN Binjie, LIU Xiaoxia, et al. Resea-rch of a novel method for measuring yarn hairiness based on image recognition[J]. Journal of Hebei University of Science and Technology, 2015, 36(1): 63-72.
[9] 周绚丽, 成玲. 纱线黑板数字图像处理方法[J]. 纺织学报, 2008, 29(8):30-34.
ZHOU Xuanli, CHENG Ling. Digital image processing method of yarn black board[J]. Journal of Textile Research, 2008, 29(8):30-34.
[10] SUN Yinyin, LI Zhongjian, PAN Ruru, et al. Measurement of long yarn hair based on hairiness segmentation and hairiness tracking[J]. Journal of The Textile Institute, 2016, 108(7):1-9.
doi: 10.1080/00405000.2015.1133105
[11] 卢明, 刘一萍. 纱线毛羽图像的二值化处理及其MatLab实现[J]. 山东纺织科技, 2009, 50(2):37-39.
LU Ming, LIU Yiping. Binary processing of yarn hairiness image and its MatLab implementation[J]. Shandong Textile Science & Engineering, 2009, 50(2):37-39.
[12] 陆奕辰, 王蕾, 唐千惠, 等. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(8):144-149.
LU Yichen, WANG Lei, TANG Qianhui, et al. Dete-ction and evaluation on yarn hairiness of blackboard with image processing[J]. Journal of Textile Research, 2018, 39(8):144-149.
[13] WANG W, XIN B, DENG N, et al. Single vision based identification of yarn hairiness using adaptive threshold and image enhancement method[J]. Measurement, 2018, 128:220-230.
doi: 10.1016/j.measurement.2018.06.029
[14] 马珂, 严凯, 张缓缓, 等. 基于贝叶斯阈值的纱线毛羽检测方法研究[J]. 棉纺织技术, 2021, 49(4):11-15.
MA Ke, YAN Kai, ZHANG Huanhuan, et al. Study on yarn hairiness measurement method based on B-ayesian threshold[J]. Cotton Textile Technology, 2021, 49(4):11-15.
[1] 郭敏, 王静安, 郭明瑞, 高卫东. 基于毛羽图像检测的浆纱抗起毛性能评价[J]. 纺织学报, 2022, 43(03): 78-82.
[2] 李鹏飞, 严凯, 张缓缓, 景军锋. 基于最大熵与密度聚类相融合的毛羽检测[J]. 纺织学报, 2019, 40(07): 158-162.
[3] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[4] 景军锋, 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019, 40(05): 157-162.
[5] 孙银银 张宁 吴洋 潘如如 高卫东. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017, 38(08): 32-38.
[6] 陈怀忠 何仁初 史桂丽. 基于改进PSO算法的自动配棉工艺参数优化设计[J]. 纺织学报, 2014, 35(6): 142-0.
[7] 于学智 曹继鹏 孙鹏子. 梳棉机盖板踵趾差对纱线毛羽的影响[J]. 纺织学报, 2013, 34(7): 35-39.
[8] 牟俊玲;邱华;葛明桥. 旋流器对环锭纺纱线性能的影响[J]. 纺织学报, 2009, 30(11): 43-47.
[9] 褚结;葛明桥. 旋流器降低环锭纺纱线毛羽的研究[J]. 纺织学报, 2007, 28(12): 34-37.
[10] 钱友三;程隆棣;薛文良. 络筒上蜡装置设计原理与分析[J]. 纺织学报, 2007, 28(1): 102-104.
[11] 黄立新;崔毅华. 高涤T/C细密织物的纱线上浆与毛羽控制[J]. 纺织学报, 2002, 23(03): 58-59.
[12] 李勇;付小莉;尚会超. 三维人体测量方法的研究[J]. 纺织学报, 2001, 22(04): 61-62.
[13] 杨红英;朱苏康. 纱线毛羽[J]. 纺织学报, 2000, 21(06): 11-14.
[14] 高卫东;王鸿博. 纱线毛羽危害程度的探讨[J]. 纺织学报, 1998, 19(06): 19-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!