纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 11-20.doi: 10.13475/j.fzxb.20220407210

• 特约专栏:纺织智能制造与机器人 • 上一篇    下一篇

环锭纺纱全流程机器人自动化生产关键技术

郑小虎1,2, 刘正好3, 陈峰4, 刘志峰4, 汪俊亮1,2, 侯曦5, 丁司懿1,2()   

  1. 1.东华大学 人工智能研究院, 上海 201620
    2.上海工业大数据与智能系统工程技术研究中心, 上海 201620
    3.东华大学 机械工程学院, 上海 201620
    4.经纬纺织机械股份有限公司, 北京 100176
    5.中国纺织机械协会, 北京 100028
  • 收稿日期:2022-04-22 修回日期:2022-06-12 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 丁司懿
  • 作者简介:郑小虎(1983—),男,副教授,博士。主要研究方向为机器人制造技术。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000);上海市晨光计划资助项目(20CG41);中央高校基本科研业务费专项资金资助项目(2232021D-15);上海市科技计划项目(20DZ2251400)

Key technologies for full-process robotic automatic production in ring spinning

ZHENG Xiaohu1,2, LIU Zhenghao3, CHEN Feng4, LIU Zhifeng4, WANG Junliang1,2, HOU Xi5, DING Siyi1,2()   

  1. 1. Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
    2. Research Center of Shanghai Industrial Big Data and Intelligent System, Shanghai 201620, China
    3. College of Mechanical Engineering,Donghua University, Shanghai 201620, China
    4. Jingwei Textile Machinery Co., Ltd., Beijing 100176, China
    5. China Textile Machinery Association, Beijing 100028, China
  • Received:2022-04-22 Revised:2022-06-12 Published:2022-09-15 Online:2022-09-26
  • Contact: DING Siyi

摘要:

针对环锭纺纱全流程自动化生产工艺与工业机器人的深度集成问题,提出了环锭纺纱生产线布局仿真优化方法,构建了生产线协同调度模型,详细阐述了配棉排包、精梳机自动喂棉卷和筒纱外观检测等关键工艺机器人应用场景,提出了以信息互联互通技术为核心的信息集成管控策略,建立了工艺、生产计划、质量、设备及物流一体化智能管控系统,形成了环锭纺纱生产线全流程智能管理模式,实现了基于纱管的纺纱质量追溯。结果表明:所使用的任务调度方法有效提升了相关工序的生产效率,设计的纺纱工艺机器人打通了配棉排包等工艺流程断点,相关技术应用后企业综合生产效率提升22.65%,运营成本降低40%,形成纺纱行业智能化转型典型案例并已向行业推广。

关键词: 环锭纺纱, 机器人, 自动化生产线, 智能管控系统, 工业自动化, 生产效率

Abstract:

Aiming at deep integration of ring spinning full-process automation with industrial robots, a simulation optimization method for ring spinning production line layout was proposed, and a production line collaborative scheduling model was constructed. The application scenarios of key process robots, such as cotton distribution and bale discharge, automatic feeding of cotton rolls by comber and appearance inspection of barrel yarn, were presented in details. An information integrated management and control strategy based on information interconnection technology was proposed, and an intelligent management and control system integrating process, production planning, quality, equipment and logistics was established. The whole process intelligent management mode of ring spinning production line was formed, and the spinning quality traceability based on the yarn tube was achieved. The results show that the task scheduling method effectively improves the production efficiency of related processes. The designed spinning process robot has filled in the process breakpoints such as cotton distribution and bale discharge. After the application of relevant technologies, the comprehensive production efficiency of the enterprise demonstrated an increase of 22.65% and an operating cost reduction of 40%. This technology has been taken as a typical case of intelligent transformation in the spinning industry and is promoted to the industry.

Key words: ring spinning, robot, automatic production line, intelligent control system, industrial automation, production efficiency

中图分类号: 

  • TS112.7

图1

环锭纺纱全流程生产线布局配置"

图2

多批次任务调度方法技术路线"

表1

符号定义"

符号 含义
I 工序级数
i 第几级工序
Zi i级工序向下一级工序输出的产品类型数
zi i级工序上的第z种产品,当i=0时表示起始工序
N z I 最终产品类型z的数量
Piz i级工序的z产品线拥有的工序数量
piz i级工序z产品线的第p个工序
R p i z p ' i ' z ' + 工序piz加工1个批次所需的来自工序P'i'z'的产品数量
R p i z - 工序piz的1个加工批次陆续产出的产品数量
L p i z 工序piz的加工总批次
l p i z 工序piz的第l个加工批次
J p i z p ' i ' z ' + 工序piz加工所需p'i'z'工序的产品总数
j p i z p ' i ' z ' + 工序piz加工所需P'i'z'工序的第j个产品
J p i z - 工序piz加工的产/成品总数
j p i z - 工序piz的第j个产/成品
K p i z 工序piz的加工设备总数
k p i z 工序piz中的第k台加工设备
V AGV总数
v v辆AGV
t p i z 工序piz上的加工设备加工单位原材料所需时间

表2

决策变量定义"

符号 含义
T j p i z k i级工序向下一级工序输出的产品类型数
C j p i z p ' i ' z ' 原料 j p i z p i ' z ' +运送至工序piz的运输任务
x C j p i z p ' i ' z ' v x C j p i z p ' i ' z ' v= 1 , C j p i z p ' i ' z ' v 0 ,
y k l p i z y k l p i z= 1 , p i z l k l p i z 0 ,
u j l p i z p ' i ' z ' u j l p i z p ' i ' z '= 1 , j p i z p ' i ' z ' + l 0 ,
w j l p i z w j l p i z= 1 , j p i z - l 0 ,

图3

配棉排包系统架构"

图4

仓库管理和调度系统"

图5

精梳机自动喂棉卷机器人单元布局"

图6

自动退空管工作原理 1—拉杆机构; 2—筒管。"

图7

棉条自动接头原理"

图8

牵伸区防堵结构 1—扁风盒; 2—输棉导管; 3—喇叭口; 4—喇叭口座; 5—压花辊A; 6—压花辊B; 7—输送辊; 8—紧定螺钉。"

图9

筒纱检测系统结构"

图10

主要筒纱缺陷检测图像"

图11

筒纱缺陷检测算法流程图"

图12

信息互联互通原理"

图13

纺纱质量追溯技术拓扑结构"

图14

全流程智能纺纱工厂管理系统构造图"

[1] 张苏道, 薛文良. 传统棉纺企业的智能化改造建议[J]. 棉纺织技术, 2022, 50(1): 4-8.
ZHANG Sudao, XUE Wenliang. Suggestion on intelligent modification of traditional cotton spinning enterprise[J]. Cotton Textile Technology, 2022, 50(1): 4-8.
[2] 杨华明, 齐泽京, 梅顺齐. 全流程数字化智能化纺纱装备的开发与实践[J]. 纺织科学研究, 2021(6): 38-40.
YANG Huaming, QI Zejing, MEI Shunqi. Development and practice of whole process digital and intelligent spinning equipment[J]. Textile Science Research, 2021 (6): 38-40.
[3] HALEEM Noman, BUSTREO Matteo, BUE Alessio-Del. A computer vision based online quality control system for textile yarns[J]. Computers in Industry, 2021. DOI: 10.1016/j.compind.2021.103550.
doi: 10.1016/j.compind.2021.103550
[4] 牟新刚, 蔡逸超, 周晓, 等. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(1): 139-145.
MOU Xin'gang, CAI Yichao, ZHOU Xiao, et al. On-line yarn cone defects detection system based on machine vision[J]. Journal of Textile Research, 2018, 39(1): 139-145.
[5] XU Fei, XU Na. Design of control system for industrial spinning production line[C]//4th IEEE International Conference on Automation, Electronics and Electrical Engineering. Shenyang: AUTEEE, 2021: 195-199.
[6] 郑小虎, 鲍劲松, 马清文, 等. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(6): 36-41.
ZHENG Xiaohu, BAO Jinsong, MA Qingwen, et al. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm[J]. Journal of Textile Research, 2020, 41(6): 36-41.
[7] FAROOQ Basit, BAO Jinsong, MA Qingwen. Flow-shop predictive modeling for multi-automated guided vehicles scheduling in smart spinning cyber-physical production systems[J]. Electronics (Switzerland), 2020. DOI: 10.3390/electronics9050799.
doi: 10.3390/electronics9050799
[8] FAROOQ Basit, BAO Jinsong, MA Qingwen. Flow-shop path planning for multi-automated guided vehicles in intelligent textile spinning cyber-physical production systems dynamic environment[J]. Journal of Manufacturing Systems, 2021, 59(1): 98-116.
doi: 10.1016/j.jmsy.2021.01.009
[9] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48(1): 28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48 (1): 28-33.
[10] 殷士勇, 鲍劲松, 唐仕喜, 等. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(2): 65-73.
YIN Shiyong, BAO Jinsong, TANG Shixi, et al. Modeling method of cyber physical production system for ring spinning[J]. Journal of Textile Research, 2021, 42(2): 65-73.
doi: 10.1177/004051757204200112
[11] 殷士勇, 鲍劲松, 孙学民, 等. 基于信息物理系统的环锭纺纱智能车间温度闭环精准控制方法[J]. 纺织学报, 2019, 40(2): 159-165.
YIN Shiyong, BAO Jinsong, SUN Xuemin, et al. Method of temperature close-loop precision control based on cyber-physical systems for intelligent workshop of ring spinning[J]. Journal of Textile Research, 2019, 40(2): 159-165.
[12] YIN Shiyong, BAO Jinsong, ZHANG Jie, et al. Real-time task processing method based on edge computing for spinning CPS[J]. Frontiers of Mechanical Engineering, 2019, 14 (3): 320-331.
doi: 10.1007/s11465-019-0542-1
[13] 郑小虎, 张洁. 数字孪生技术在纺织智能工厂中的应用探索[J]. 纺织导报, 2019(3): 37-41.
ZHENG Xiaohu, ZHANG Jie. Application of digital twin technology in textile intelligent factory[J]. China Textile Leader, 2019 (3): 37-41.
[1] 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10.
[2] 吴乐, 张倩, 杨万然, 徐朝月, 王维冠, 侯曦. 基于增强现实技术的筒子纱印染锁扣机器人运维巡检系统研究[J]. 纺织学报, 2022, 43(09): 34-40.
[3] 屠佳佳, 孙磊, 毛慧敏, 戴宁, 朱婉珍, 史伟民. 圆纬机纱架自动换筒技术[J]. 纺织学报, 2022, 43(07): 178-185.
[4] 莫帅, 周长鹏, 李旭, 杨振宁, 刘辉华, 高瀚君. 机器人智能关节驱控结构一体化设计方法研究[J]. 纺织学报, 2022, 43(03): 160-167.
[5] 王晓华, 王育合, 张蕾, 王文杰. 缝纫机器人对织物张力与位置的模糊阻抗控制[J]. 纺织学报, 2021, 42(11): 173-178.
[6] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[7] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200.
[8] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[9] 殷士勇, 鲍劲松, 唐仕喜, 杨芸. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(02): 65-73.
[10] 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺织学报, 2020, 41(12): 137-143.
[11] 沈津竹, 赵晓露, 张帆, 俞青, 苏军强. 柔性康复手套设计与工效性评价[J]. 纺织学报, 2020, 41(09): 119-127.
[12] 李珣, 南恺恺, 赵征凡, 王晓华, 景军锋. 多智能体博弈的纺织车间搬运机器人任务分配[J]. 纺织学报, 2020, 41(07): 78-87.
[13] 周虎, 刘涛, 高金杰, 周强, 罗滨鸿, 游政, 苏炳望, 巴拉. 手工地毯植绒机轨迹规划及其速度控制优化[J]. 纺织学报, 2019, 40(10): 177-182.
[14] 任荟颖, 邹鲲, 胡小荣. 化纤长丝自动落卷系统仿真平台开发[J]. 纺织学报, 2019, 40(07): 151-157.
[15] 殷士勇, 鲍劲松, 孙学民, 王佳铖. 基于信息物理系统的环锭纺纱智能车间温度闭环精准控制方法[J]. 纺织学报, 2019, 40(02): 159-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!