纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 137-142.doi: 10.13475/j.fzxb.20210507506

• 染整与化学品 • 上一篇    下一篇

棉织物的螺吡喃微胶囊印花及其光致变色性能

杨梦凡, 王潮霞(), 殷允杰, 邱华   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2021-05-26 修回日期:2022-06-20 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 王潮霞
  • 作者简介:杨梦凡(1996—),女,硕士生。主要研究方向为智能变色纺织化学品。
  • 基金资助:
    国家自然科学基金项目(21975107)

Printing and photochromic properties of spiropyran microcapsules on cotton fabrics

YANG Mengfan, WANG Chaoxia(), YIN Yunjie, QIU Hua   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-05-26 Revised:2022-06-20 Published:2022-09-15 Online:2022-09-26
  • Contact: WANG Chaoxia

摘要:

为获得一种可检测紫外光强度的光致变色纺织品,采用溶剂挥发法制备以螺吡喃光致变色材料为芯材,以聚甲基丙烯酸甲酯为壁材的微胶囊,用微胶囊对棉织物进行丝网印花。表征了所制备微胶囊的粒径、形貌、芯材包封率及光致变色性能。采用自制变色梯度板记录微胶囊印花织物变色色差,探究了紫外光辐照条件对棉织物光致变色性能的影响和印花工艺对其耐摩擦色牢度的影响。结果表明:螺吡喃微胶囊的平均粒径为729 nm,分散指数为0.34;印花织物变色色差随微胶囊质量分数、紫外光强度及照射时间的提高而增加,微胶囊质量分数为14%的印花织物经30 W/m2紫外光照射100 s,变色色差可达19.02;印花织物的耐干、湿摩擦色牢度分别可达4~5级和4级,20次紫外-可见光循环照射后光致变色色差损失12.26%。

关键词: 螺吡喃, 微胶囊, 光致变色, 智能纺织品, 印花, 紫外光检测

Abstract:

In order to obtain a photochromic textile for detecting ultraviolet(UV) intensity, microcapsules with spiropyran photochromic material as core material and polymethylmethacrylate as wall material were prepared by solvent volatilization method for printing cotton fabrics. The particle size, surface topography, core encapsulation efficiency and photochromic properties of the prepared microcapsules were characterized. A self-made color gradation chart was used to record the photochromic color difference of the photochromic textile. The effects of UV irradiation conditions on the photochromic properties and printing process on the rubbing color fastness of cotton fabrics were investigated. The results showed that the average particle size of spiropyran microcapsules was 729 nm, and the polydispersity index was 0.34. In a certain range, the photochromic color difference increased with the increase of microcapsule dosage, UV irradiation time and UV intensity. The color difference of printed fabric with 14% microcapsule content can reach 19.02 after UV irradiation at 30 W/m2 for 100 s, and the color fastness to dry rubbing of the printed fabric can reach grade 4-5 and the color fastness to wet rubbing can reach grade 4. The photochromic performance lost 12.26% after 20 UV-Vis cycles.

Key words: spiropyran, microcapsule, photochromic, intelligent textile, printing, ultraviolet detection

中图分类号: 

  • TS194.2

表1

变色梯度板的色度值"

L* a* b* ΔE
85.00 17.00 7.00 22.38
85.74 16.16 6.63 21.21
86.47 15.32 6.26 20.03
87.21 14.47 5.90 18.85
87.95 13.63 5.53 17.67
88.69 12.79 5.16 16.49
89.42 11.95 4.79 15.32
90.16 11.11 4.42 14.14
90.90 10.26 4.06 12.96
91.63 9.42 3.69 11.78
92.37 8.58 3.32 10.60
93.11 7.74 2.95 9.43
93.84 6.90 2.58 8.25
94.58 6.05 2.22 7.07
95.32 5.21 1.85 5.89
96.05 4.37 1.48 4.71
96.79 3.53 1.11 3.54
97.53 2.69 0.74 2.36
98.27 1.84 0.38 1.18
99.00 1.00 0.00 0.00

图1

螺吡喃微胶囊的粒径分布"

图2

不同放大倍数的螺吡喃微胶囊的SEM照片"

图3

螺吡喃、微胶囊粉末紫外光照射前后照片"

图4

紫外光照射前后螺吡喃正辛烷溶液及微胶囊水分散液的波长与吸光度曲线"

图5

紫外光照射前后的螺吡喃结构"

图6

微胶囊、螺吡喃及聚甲基丙烯酸甲酯的热重曲线"

图7

微胶囊质量分数及紫外光照射时间对印花织物变色ΔE的影响"

图8

微胶囊质量分数及紫外光强度对印花织物变色ΔE的影响"

图9

紫外-可见光循环照射次数对印花织物变色ΔE的影响"

表2

黏合剂质量分数对印花织物耐摩擦色牢度的影响"

黏合剂质量分数/% 耐干摩擦色牢度/级 耐湿摩擦色牢度/级
12 4 2
14 4 2~3
16 4 4
18 4~5 4
20 4 2~3
[1] KORTEK A A S L, BROWNE W R. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome[J]. Chemical Society Reviews, 2019, 48(12): 3406-3424.
doi: 10.1039/C9CS00203K
[2] BAO Lihong, WANG Shixian. Preparation of photochromic waterborne polyurethane films: effect of spiropyran concentration on photochromic properties[J]. Journal of Donghua University(English Edition), 2020, 37(1): 28-34.
[3] ZHANG T, FU L, CHEN Z, et al. Photochromic properties of spiropyran in epoxy resin as anti-counterfeiting coating on flexible materials[J]. Progress in Organic Coatings, 2016, 100:100-104.
doi: 10.1016/j.porgcoat.2016.02.001
[4] TIAN W, TIAN J. An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions[J]. Dyes & Pigments, 2014, 105:66-74.
[5] TOPBAS O, SARIISIK A M, ERKAN G, et al. Photochromic microcapsules by coacervation and in situ polymerization methods for product-marking applica-tions[J]. Iranian Polymer Journal, 2020, 29(2):117-132.
doi: 10.1007/s13726-019-00781-9
[6] FAN Fei, WANG Chaoxia. Preparation and photochromic properties of nanocapsules containing azo compound with polyurethane as wall material using in situ polymerization[J]. Polymer-Plastics Technology and Engineering, 2014, 53(10): 1062-1069.
doi: 10.1080/03602559.2014.886071
[7] 李静, BASUDE M, 赵瑞, 等. 郑州市紫外线强度及其皮肤病学意义[J]. 中国美容医学, 2013, 22(13): 1407-1411.
LI Jing, BASUDE M, ZHAO Rui, et al. Ultraviolet intensity in Zhengzhou and its dermology implication[J]. Chinese Journal of Aesthetic Medicine, 2013, 22(13): 1407-1411.
[8] 周立亚, 陈梦琴. 紫外光敏变色织物的颜色响应性能研究[J]. 纺织导报, 2019(11): 85-88.
ZHOU Liya, CHEN Mengqin. Study on the color change response of ultraviolet photosensitive fabrics[J]. China Textile Leader, 2019(11): 85-88.
[9] ZHENG Y, PANATDASIRISUK W, LIU J, et al. Patterned, wearable UV indicators from electrospun photochromic fibers and yarns[J]. Advanced Materials Technologies, 2020. DOI: 10.1002/admt.202000564.
doi: 10.1002/admt.202000564
[10] BAO B, FAN J, WANG Z, et al. Sodium deca-tungstate/polyacrylic acid self-assembled flexible wearable photochromic composite fabric for solar UV detector[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108464.
doi: 10.1016/j.compositesb.2020.108464
[11] FANG W, SAIRANEN E, VUORI S, et al. UV-sensing cellulose fibers manufactured by direct incorporation of photochromic minerals[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16338-16346.
[1] 谢子文, 李家炜, 汪芬萍, 戚栋明, 严小飞, 朱晨凯, 赵磊, 何贵平. 有机硅改性水性聚氨酯丙烯酸酯杂化胶乳的制备及其在涂料印花中的应用[J]. 纺织学报, 2022, 43(08): 119-125.
[2] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[3] 戚栋明, 樊高晴, 虞一浩, 符晔, 张艳, 陈智杰. 蓖麻油基紫外光固化水性涂料墨水制备及其印花性能[J]. 纺织学报, 2022, 43(05): 26-31.
[4] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[5] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[6] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[7] 冯冰冰, 刘艳春, 周天池, 白刚. 分散染料免蒸洗印花糊料的制备及其性能[J]. 纺织学报, 2022, 43(01): 161-166.
[8] 鲜永芳, 王红梅, 吴明华, 王莉莉. 少/无氨氮助剂在活性染料深色印花中的应用[J]. 纺织学报, 2021, 42(11): 89-96.
[9] 胡群, 张宁, 潘如如. 应用均值漂移的印花面料交互式换色方法[J]. 纺织学报, 2021, 42(11): 97-102.
[10] 李畅, 房宽峻, 刘秀明, 安芳芳, 梁迎超, 刘昊. 疏水体系中阳离子改性对棉/聚酰胺织物表面墨滴铺展的影响[J]. 纺织学报, 2021, 42(09): 112-119.
[11] 汪芬萍, 李家炜, 黄骅隽, 吴金丹, 付少海, 戚栋明, 赵磊, 何贵平. 纺织品着色用有机颜料改性技术的研究进展[J]. 纺织学报, 2021, 42(07): 192-200.
[12] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[13] 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143.
[14] 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197.
[15] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!