纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 149-155.doi: 10.13475/j.fzxb.20210705507

• 染整与化学品 • 上一篇    下一篇

改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能

杨丽, 王涛, 石现兵, 韩振邦()   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2021-07-19 修回日期:2022-06-19 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 韩振邦
  • 作者简介:杨丽(1969—),女,实验师。主要研究方向为功能纤维材料。
  • 基金资助:
    国家自然科学基金青年项目(52003192);天津市技术创新引导专项基金项目(20YDTPJC00920)

Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation

YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang()   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-07-19 Revised:2022-06-19 Published:2022-09-15 Online:2022-09-26
  • Contact: HAN Zhenbang

摘要:

为提升MoSx/TiO2异质结的光催化性能,使用偕胺肟改性的聚丙烯腈(PAN)纤维作为载体,先通过静电结合及原位转化负载MoSx,再通过配位作用结合TiO2合成了复合光催化剂。分析了该催化剂的表面形貌、化学结构和光吸收性能,并考察了其在可见光下对印染废水的处理效果。结果表明:MoSx和TiO2可均匀分布于PAN纤维表面,且MoSx的引入大幅提升了催化剂的光吸收性能,并能够在波长大于500 nm的可见光下快速氧化降解染料废水,其反应速率常数达到单独负载TiO2纤维催化剂的4.7倍;该催化剂具有优异的重复使用性能,其高活性主要来源于MoSx对污染物的强吸附能力及其在可见光下对TiO2的敏化作用。

关键词: 硫化钼, 二氧化钛, 改性聚丙烯腈纤维, 光催化, 染料降解, 印染废水, 废水处理

Abstract:

To improve the photocatalytic performance of MoSx/TiO2 heterojunction, amorphous MoSx was anchored onto amidoximated polyacrylonitrile (PAN) fiber via an adsorption and in-situ transformation method, and then TiO2 was immobilized onto the fibrous support in order to synthesize a composite photocatalyst. The morphology, chemical structure and optical property of the photocatalyst were investigated, and its photocatalytic performance on the oxidation of dye wastewater was evaluated under visible light irradiation. The results show that MoSx and TiO2 can be uniformly distributed onto the fibrous surface, and the MoSx significantly enhances the light absorption of the photocatalyst. The as-prepared photocatalyst could achieve the fast oxidative degradation of the dye wastewater under light irradiation with wavelength greater than 500 nm, resulting in a 4.7-fold higher reaction kinetics versus the reaction system over single TiO2 supported fibrous photocatalyst. In addition, the photocatalyst exhibited high recycling ability for dye degradation. This high photocatalytic activity mainly originates from the enhanced adsorption performance towards pollutants by MoSx, as well as the sensitization effect of MoSx to TiO2 under visible light irradiation.

Key words: MoSx, TiO2, modified polyacrylonitrile fiber, photocatalysis, dye degradation, dye wastewater, wastewater treatment

中图分类号: 

  • TQ619.2

表1

不同MoSx/TiO2-PAN样品的金属含量"

样品名称 溶液中浓度/
(mol·L-1)
催化剂中含量/
(mg·g-1)
C M o S x
C T i O 2
Mo S 4 2 - TiO2 CMoSx C T i O 2
TiO2-PAN 0 0.094 0 85.6
MoSx/TiO2-PAN1 0.012 0.094 3.9 75.8 0.05∶1
MoSx/TiO2-PAN2 0.018 0.094 6.8 73.9 0.09∶1
MoSx/TiO2-PAN3 0.024 0.094 9.6 73.6 0.13∶1
MoSx/TiO2-PAN4 0.030 0.094 12.5 71.8 0.17∶1

图1

MoSx/TiO2-PAN3的扫描电镜照片及EDAX图"

图2

AO-PAN和MoSx/TiO2-PAN3样品的红外光谱图"

图3

MoSx/TiO2-PAN3样品的XPS谱图"

图4

不同MoSx/TiO2-PAN样品的紫外-可见漫反射吸收光谱"

图5

不同MoSx/TiO2-PAN样品的光催化降解RhB曲线"

表2

不同MoSx/TiO2-PAN样品光降解RhB的k值及其暗态下对RhB的降解率"

样品名称 k/min-1 降解率/%
TiO2-PAN 0.006 17.6
MoSx/TiO2-PAN1 0.010 23.3
MoSx/TiO2-PAN2 0.022 25.1
MoSx/TiO2-PAN3 0.028 26.6
MoSx/TiO2-PAN4 0.011 27.3

图6

MoSx-PAN和MoSx/TiO2-PAN样品的PL谱图"

图7

捕捉剂对MoSx/TiO2-PAN3光催化降解RhB的影响"

图8

溶液pH值对MoSx/TiO2-PAN3光催化降解RhB的影响"

图9

MoSx/TiO2-PAN3在染料降解中的重复利用性"

[1] 刘俊逸, 黄青, 李杰, 等. 印染工业废水处理技术的研究进展[J]. 水处理技术, 2021, 47(3): 1-6.
LIU Junyi, HUANG Qing, LI Jie, et al. Research progress on the treatment technologies of industrial printing and dyeing wastewater[J]. Technology of Water Treatment, 2021, 47(3): 1-6.
[2] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[3] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Review, 2014, 114: 9919-9986.
doi: 10.1021/cr5001892
[4] ASAHI R, MORIKAWA T, IRIE H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects[J]. Chemical Review, 2014, 114: 9824-9852.
doi: 10.1021/cr5000738
[5] 巩云, 王龙龙, 徐亚琪, 等. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(2): 1037-1040.
GONG Yun, WANG Longlong, XU Yaqi, et al. Research progress on photocatalytic modification of titanium dioxide[J]. Materials Reports, 2020, 34(2): 1037-1040.
[6] TIAN H, LIU M, ZHENG W. Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental, 2018, 225: 468-476.
doi: 10.1016/j.apcatb.2017.12.019
[7] ZHOU W, YIN Z, DU Y, et al. Synthesis of few-layer MoS2nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities[J]. Small, 2013, 9: 140-147.
doi: 10.1002/smll.201201161
[8] WANG D, XU Y, SUN F, et al. Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification[J]. Applied Surface Science, 2016, 389: 496-506.
doi: 10.1016/j.apsusc.2016.07.154
[9] YU H, XIAO P, WANG P, et al. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental, 2016, 193: 217- 225.
doi: 10.1016/j.apcatb.2016.04.028
[10] 张敬, 孙学凤, 高婷婷, 等. TiO2/MoS2复合材料的制备及其在光催化和储能电池中的应用研究进展[J]. 化工新型材料, 2018, 46(6): 43-47.
ZHANG Jing, SUN Xuefeng, GAO Tingting, et al. Research progress on preparation of TiO2/MoS2 composite and its application in photocatalysis and energy storage battery[J]. New Chemical Materials, 2018, 46(6): 43-47.
[11] HAN Z, LI J, HAN X, et al. A comparative study of iron-based PAN fibrous catalysts for peroxymonosulfate activation in decomposing organic contaminants[J]. Chemical Engineering Journal, 2019, 358: 176-187.
doi: 10.1016/j.cej.2018.09.224
[12] 于建涛, 韩振邦, 张健飞, 等. 联吡啶铁铜双金属负载PAN纤维的制备及其可见光催化性能研究[J]. 功能材料, 2015, 24(46): 24095-24104.
YU Jiantao, HAN Zhenbang, ZHANG Jianfei, et al. Preparation and photocatalytic properties of PAN fiber supported copper-iron bimetallic 2,2'-bipyridine compl-ex[J]. Functional Materials, 2015, 24(46): 24095-24104.
[13] HAN Z, DENG Y, FEI J, et al. Facile synthesis of amidoximated PAN fiber-supported TiO2 for visible light driven photocatalysis[J]. Colloid Surface A, 2020. DOI: 10.1016/j.colsurfa.2020.124947.
doi: 10.1016/j.colsurfa.2020.124947
[14] JI X, HAN Z, LI J, et al. MoSx co-catalytic activation of H2O2 by heterogeneous hemin catalyst under visible light irradiation[J]. Journal of Colloid Interface Science, 2019, 557: 301-310.
doi: 10.1016/j.jcis.2019.09.027
[15] LEE C G, JAVED H, ZHANG D, et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants[J]. Environmental Science and Technology, 2018, 52: 4285-4293.
doi: 10.1021/acs.est.7b06508
[16] CHANG Y, LIN C, CHEN T, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams[J]. Advanced Materials, 2013, 25: 756-760.
doi: 10.1002/adma.201202920
[17] TANG M L, GRAUER D C, LASSALLE-KAISER B, et al. Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer[J]. Angewandte Chemie International Edition, 2011, 50: 10203-10207.
doi: 10.1002/anie.201104412
[18] CHANG K, MEI Z, WANG T, et al. MoS2/grapheme cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J]. ACS Nano, 2014, 8(7): 7078-7087.
doi: 10.1021/nn5019945
[19] 董永春, 李春辉, 陈佳莉, 等. 偶氮染料在无机盐存在下的光催化氧化降解反应[J]. 太阳能学报, 2007, 28(5): 522-526.
DONG Yongchun, LI Chunhui, CHEN Jiali, et al. Photocatalytic degradation of azo dyes in the presence of inorganic salts[J]. Acta Energiae Solaris Sinica, 2007, 28(5): 522-526.
[1] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[2] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[3] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[4] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[5] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[6] 费建武, 吕明泽, 刘利伟, 王春红, 韩振邦. 基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能[J]. 纺织学报, 2022, 43(06): 37-43.
[7] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[8] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[9] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[10] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[11] 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(02): 196-201.
[12] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[13] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[14] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[15] 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!