纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 195-202.doi: 10.13475/j.fzxb.20210608908

• 综合述评 • 上一篇    下一篇

原子层沉积在纺织品表面多功能改性研究进展

杨辉宇1,2, 周敬伊1, 段子健1, 徐卫林1, 邓波1, 刘欣1()   

  1. 1.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    2.湖北工程学院 化学与材料科学学院, 湖北 孝感 432000
  • 收稿日期:2021-06-30 修回日期:2022-06-02 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 刘欣
  • 作者简介:杨辉宇(1991—),男,博士生。主要研究方向为纤维材料表面功能化改性。
  • 基金资助:
    国家自然科学基金项目(52173062);国家自然科学基金项目(51773158);湖北省重点研发计划项目(2020BAB080);湖北省中央引导地方科技发展专项(2019ZYYD077)

Research progress in textile surface multifunctional modification by atomic layer deposition

YANG Huiyu1,2, ZHOU Jingyi1, DUAN Zijian1, XU Weilin1, DENG Bo1, LIU Xin1()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
  • Received:2021-06-30 Revised:2022-06-02 Published:2022-09-15 Online:2022-09-26
  • Contact: LIU Xin

摘要:

针对无机纳米薄膜在制备多功能纺织品时,易出现纳米粒子团聚、薄膜稳定性差以及纤维强度和柔软性降低等问题,针对性地开发具有超薄可控、高界面结合牢度和稳定性优异的无机纳米薄膜是提升纺织品多功能化的有效途径。首先阐述了原子层沉积(ALD)的反应机制和制备无机纳米薄膜的独特优势;然后综述了当前国内外经ALD制备的无机纳米薄膜赋予纺织品表面抗紫外线、隔热保温、抗菌以及结构色等功能特性的研究进展,并对比分析了ALD与化学气相沉积的优缺点,总结了ALD在纺织品功能化应用中面临的挑战和问题,最后指出用ALD制备无机纳米薄膜技术是多功能纺织品的重要发展方向。

关键词: 原子层沉积, 功能性纺织品, 无机纳米薄膜, 表面改性, 化学气相沉积

Abstract:

In order to tackle the nano-particle agglomeration, poor film stability, and reduced fiber mechanical strength and flexibility when preparing multifunctional textiles from inorganic nano-films, one route is to treat the textile surface using inorganic nano-films with ultra-thin, high interfacial bonding fastness, and high-stability. This review summarizes the reaction mechanism of atomic layer deposition (ALD) and the unique advantages of preparing inorganic nano-films. The current global research progress in inorganic nano-films deposited by ALD to impart functional properties such as ultraviolet resistance, thermal insulation, antibacterial and structural color on the surface of textiles were reviewed. The advantages and disadvantages of ALD and chemical vapor deposition are compared and analyzed. The challenges and problems of ALD in the application of textile functionalization were summarized. It was pointed out that the preparation of inorganic nano-films by ALD represents an important development direction of multifunctional textiles.

Key words: atomic layer deposition, functional textiles, inorganic nano-film, surface modification, chemical vapor deposition

中图分类号: 

  • TS101

图1

经ALD在织物上沉积Al2O3的化学反应机制"

表1

原子层沉积工艺特点、优势和局限性"

工艺特点 优势 局限性
自限制表面生长 精确简单的膜厚控制;优异的三维共形性和大面积均匀性;致密无针孔薄膜;较低的生长温度 低生长速率;薄膜具有较低的结晶度或无定形态;多余前驱体的处理和污染环境
交替脉冲输入反应物 避免气相反应,可使用高活性前驱体;单原子层调控;适合界面修饰和多层重叠结构生长 前驱体的种类少、杂质残余
ALD 窗口设计 多种薄膜层制备、掺杂、循环调控 三元和复杂氧化物设计缺乏

表2

原子层沉积和化学气相沉积的特点对比"

影响因素 原子层沉积 化学气相沉积
前驱体 高反应活性;可在基材上交替反应;可接受过量前驱体;反应温度下不可分解 反应活性低;基材表面同时反应;前驱体的用量需控制;沉积温度下可分解
均匀性 由表面化学吸附、自限制反应机制生长决定 由反应室、气流和温度等工艺参数决定
反应速率 较低(纳米级生长) 高(微米级生长)
厚度 取决于反应循环次数 调控工艺参数
[1] DENG B, CAI R, YU Y, et al. Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48): 5473-5477.
doi: 10.1002/adma.201002614
[2] JIANG L, LI K, YANG H, et al. Significantly improved flame-retardancy of cellulose acetate nanofiber by Mg-based nano flaky petal[J]. Cellulose, 2019, 26 (9): 5211-5226.
doi: 10.1007/s10570-019-02451-8
[3] ZHAO J, DENG B, LV M, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013, 2(9): 1259-1266.
doi: 10.1002/adhm.201200437
[4] LIU H, LV M, DENG B, et al. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations[J]. Scientific Reports, 2014, 4(1): 1-9.
[5] CHENG Q Y, ZHAO X L, WENG Y X, et al. Fully sustainable, nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated via an eco-friendly method for efficient oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15696-15705.
[6] CHENG Q Y, GUAN C S, LI Y D, et al. Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation[J]. Cellulose, 2019, 26(4): 2861-2872.
doi: 10.1007/s10570-019-02267-6
[7] EMAM H E, BECHTOLD T. Cotton fabrics with UV blocking properties through metal salts deposition[J]. Applied Surface Science, 2015, 357: 1878-1889.
doi: 10.1016/j.apsusc.2015.09.095
[8] ROMAN L E, HUACHANI J, URIBE C, et al. Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ[J]. Applied Surface Science, 2019, 469: 204-212.
doi: 10.1016/j.apsusc.2018.11.047
[9] SOBCZYK-GUZENDA A, SZYMANOWSKI H, JAKUBOWSKI W, et al. Morphology, photocleaning and water wetting properties of cotton fabrics, modified with titanium dioxide coatings synthesized with plasma enhanced chemical vapor deposition technique[J]. Surface & Coatings Technology, 2013, 217: 51-57.
doi: 10.1016/j.surfcoat.2012.11.071
[10] WANG W, GUO J, LIU X, et al. Constructing eco-friendly flame retardant coating on cotton fabrics by layer-by-layer self-assembly[J]. Cellulose, 2020, 27(4): 5377-5389.
doi: 10.1007/s10570-020-03140-7
[11] ZHAO H, TIAN M, HAO Y, et al. Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route[J]. Journal of Materials Science, 2018, 53 (13): 9504-9520.
doi: 10.1007/s10853-018-2230-7
[12] KARTTUNEN A J, SARNES L, TOWNSEND R, et al. Flexible thermoelectric ZnO-organic superlattices on cotton textile substrates by ALD/MLD[J]. Advanced Electronic Materials, 2017, 3(6): 1600459-1600466.
doi: 10.1002/aelm.201600459
[13] LI C, REN L, LIU X, et al. Superhydrophilic and underwater superoleophobic poly(propylene) nonwoven coated with TiO2 by atomic layer deposition[J]. Advanced Materials Interfaces, 2021, 8(1): 2001485-2001495.
doi: 10.1002/admi.202001485
[14] MIDANI L, BEN-YAHIA W, SALLES V, et al. Nanofabrication via maskless localized atomic layer deposition of patterned nanoscale metal oxide films[J]. ACS Applied Nano Materials, 2021, 4(11): 11980-11988.
doi: 10.1021/acsanm.1c02550
[15] KAUSHIK M, LEROY C, CHEN Z, et al. Atomic-scale structure and its impact on chemical properties of aluminum oxide layers prepared by atomic layer deposition on silica[J]. Chemistry of Materials, 2021, 33(9): 3335-3348.
doi: 10.1021/acs.chemmater.1c00516
[16] 李爱东. 原子层沉积技术:原理及其应用[M]. 北京: 科学出版社, 2016: 18-48.
LI Aidong. Atomic layer deposition technology:principle and application[M]. Beijing: Science Press, 2016: 18-48.
[17] HYDE G K, SCAREL G, SPAGNOLA J C, et al. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics[J]. Langmuir, 2009, 26(4):2550-2558.
doi: 10.1021/la902830d
[18] HYDE G K, PARK K J, STEWART S M, et al. Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics[J]. Langmuir, 2007, 23(19):9844-9849.
doi: 10.1021/la701449t
[19] ROTH K M, ROBERTS K G, HYDE G K. Effect of weave geometry on surface energy modification of textile materials via atomic layer deposition[J]. Textile Research Journal, 2010, 80(18): 1970-1981.
doi: 10.1177/0040517510371868
[20] LEE K, JUR J S, KIM D H, et al. Mechanisms for hydrophilic/hydrophobic wetting transitions on cellulose cotton fibers coated using Al2O3 atomic layer deposition[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012. DOI: 10.1116/1.3671942.
doi: 10.1116/1.3671942
[21] XIAO X, CAO G, CHEN F, et al. Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition[J]. Applied Surface Science, 2015, 349: 876-879.
doi: 10.1016/j.apsusc.2015.05.061
[22] CHEN F, LIU X, YANNG H, et al. A simple one-step approach to fabrication of highly hydrophobic silk fabrics[J]. Applied Surface Science, 2016, 360: 207-212.
doi: 10.1016/j.apsusc.2015.10.186
[23] CHEN F, YANG H, LIU X, et al. Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5653-5660.
[24] XIONG S, KONG L, HUANG J, et al. Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations[J]. Journal of Membrane Science, 2015, 493:478-485.
doi: 10.1016/j.memsci.2015.06.054
[25] XIAO X, LIU X, CHEN F, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21326-21333.
[26] LIANG Z, ZHOU Z, LI J, et al. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for bulk fiber[J]. Chemical Engineering Journal, 2021, 415: 128980-128989.
doi: 10.1016/j.cej.2021.128980
[27] CHEN F X, YANG Y, LI K, et al. Exceptional wearability of multifunctional TiO2-coated hybrid silk fabric with controllable ultraviolet-protection proper-ties[J]. Textile Research Journal, 2018, 88(24): 2757-2765.
doi: 10.1177/0040517517729390
[28] XIAO X, XIN L, CAO G, et al. Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection[J]. Polymer Engineering & Science, 2015, 55(6): 1296-1302.
[29] YANG H, YU Z, LI K, et al. Facile and effective fabrication of highly UV-resistant silk fabrics with excellent laundering durability and thermal and chemical stabilities[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27426-27434.
[30] LI L, XU W, WU X, et al. Fabrication and characterization of infrared-insulating cotton fabrics by ALD[J]. Cellulose, 2017, 24(9): 3981-3990.
doi: 10.1007/s10570-017-1380-0
[31] LI W, LI L, XI W, et al. High infrared blocking cellulose film based on amorphous to anatase transition of TiO2 via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21056-21060.
[32] POPESCU M C, UNGUREANU C, BUSE E, et al. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition[J]. Applied Surface Science, 2019, 481: 1287-1298.
doi: 10.1016/j.apsusc.2019.03.268
[33] WANG Z, LI Z, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale Research Letters, 2017, 12(1): 1-8.
doi: 10.1186/s11671-016-1773-2
[34] FENG S, LI D, LOW Z X, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93.
doi: 10.1016/j.memsci.2017.02.042
[35] 黎俊妤, 蒋培清, 张文奇, 等. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30,36.
LI Junyu, JIANG Peiqing, ZHANG Wenqi, et al. Effect of atomic layer deposition technology on functionalization of cellulose membranes[J]. Journal of Textile Research, 2020, 41(12): 26-30,36.
[36] LEE S M, PIPPEL E, GÖSELE U, et al. Greatly increased toughness of infiltrated spider silk[J]. Science, 2009, 324(5926): 488-492.
doi: 10.1126/science.1168162
[37] GREGORCZYK K E, PICKUP D F, SANZ M G, et al. Tuning the tensile strength of cellulose through vapor-phase metalation[J]. Chemistry of Materials, 2015, 27(1): 181-188.
doi: 10.1021/cm503724c
[38] SHIMEL M, GOUZMAN I, GROSSMAN E, et al. Enhancement of wetting and mechanical properties of UHMWPE-based composites through alumina atomic layer deposition[J]. Advanced Materials Interfaces, 2018, 5(14): 1800295-1800304.
doi: 10.1002/admi.201800295
[39] JIA X, LOW Z, CHEN H, et al. Atomic layer deposition of Al2O3 on porous polypropylene hollow fibers for enhanced membrane performances[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 695-700.
doi: 10.1016/j.cjche.2017.10.008
[40] PENG Q, TSENG Y C, DARLING S B, et al. Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers[J]. Advanced Materials, 2010, 22 (45): 5129-5133.
doi: 10.1002/adma.201002465
[41] PENG Q, TSENG Y C, DARLING S B, et al. A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates[J]. ACS Nano, 2011, 5(6):4600-4606.
doi: 10.1021/nn2003234
[42] BO G, PARSONS G N. Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition[J]. Journal of Materials Chemistry, 2012, 22(31): 15672-15682.
doi: 10.1039/c2jm32343e
[43] PARSONS G N, ATANASOV S E, DANDLEY E C, et al. Mechanisms and reactions during atomic layer deposition on polymers[J]. Coordination Chemistry Reviews, 2013, 257(23/24): 3323-3331.
doi: 10.1016/j.ccr.2013.07.001
[44] JUR J S, SPAGNOLA J C, LEE K, et al. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers[J]. Langmuir, 2010, 26(11): 8239-8244.
doi: 10.1021/la904604z
[45] YANG H, LI K, LIU W, et al. Development of structural colored cotton fabric via the layer-by-layer electrostatic self-assembling of SiO2 nanoparticles[J]. Cellulose, 2020, 27(7): 4133-4144.
doi: 10.1007/s10570-020-03040-w
[46] YANG H, ZHOU J, DUAN Z, et al. Preparation of structural color on cotton fabric with high color fastness through multiple hydrogen bonds between polyphenol hydroxyl and lactam[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3244-3254.
[47] HORI T, ZOLLINGER H. The role of water in the dyeing process[J]. Textile Chemist & Colorist, 1986, 18(10):19-25.
[48] 孙瑞哲, 王曾敬. 依靠技术进步解决印染行业水污染问题[J]. 环境保护, 2007(19): 33-35.
SUN Ruizhe, WANG Zengjing. Relying on technological progress to solve the problem of water pollution in printing and dyeing industry[J]. Environmental Protection, 2007(19): 33-35.
[49] CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139
[50] NIU W, ZHANG L, WANG Y, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces, 2019, 11 (35): 32261-32268.
[1] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[2] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[3] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[4] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[5] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[6] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[7] 王志辉, 徐羽菲, 郭豪玉, 张康磊, 庞星辰, 聂小林, 诸葛健, 魏取福. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196.
[8] 陈香香, 吴婷, 周伟涛, 孙洋洋, 杜姗, 张晓莉. 双氧水/抗坏血酸引发甲基丙烯酸甲酯接枝改性锦纶6织物及其性能[J]. 纺织学报, 2021, 42(09): 131-136.
[9] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[10] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[11] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[13] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[14] 黎俊妤, 蒋培清, 张文奇, 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[15] 刘冰倩, 盛丹, 潘恒, 曹根阳. N,N-二甲基乙酰胺/氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!